K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 6 2017

Áp dụng BĐT AM-GM ta có:

\(\dfrac{x^2}{\sqrt{1-x^2}}=\dfrac{x^3}{x\sqrt{1-x^2}}\ge\dfrac{x^3}{\dfrac{x^2+1-x^2}{2}}=2x^3\)

Tương tự cho 2 BĐT còn lại ta cũng có:

\(\dfrac{y^2}{\sqrt{1-y^2}}\ge2y^3;\dfrac{z^2}{\sqrt{1-z^2}}\ge2z^3\)

Cộng theo vế 3 BĐT trên ta có:

\(P\ge2x^3+2y^3+2z^3=2\left(x^3+y^3+z^3\right)=2\)

21 tháng 6 2017

c/m 2 vế = nhau đó

16 tháng 8 2017

Giải bài này hơi dài, t ngại làm lắm :v you vào ib t chỉ cho =))

16 tháng 8 2017

ok!

23 tháng 5 2016

 

1) ( x, y, z chứng minh rằng : a) x + y + z xy+ yz + zx b) x + y + z 2xy – 2xz + 2yz c) x + y + z+3 2 (x + y + z) Giải: a) Ta xét hiệu x + y + z- xy – yz - zx =.2 .( x + y + z- xy – yz – zx) =đúng với mọi x;y;z Vì (x-y)2 0 với(x ; y Dấu bằng xảy ra khi x=y (x-z)2 0 với(x ; z Dấu bằng xảy ra khi x=z (y-z)2 0 với( z; y Dấu bằng xảy ra khi z=y Vậy x + y + z xy+ yz + zx Dấu bằng xảy ra khi x = y =z b)Ta xét hiệu x + y + z- ( 2xy – 2xz +2yz ) = x + y + z- 2xy +2xz –2yz =( x – y + z) đúng với mọi x;y;z Vậy x + y + z 2xy – 2xz + 2yz đúng với mọi x;y;z Dấu bằng xảy ra khi x+y=z c) Ta xét hiệu x + y + z+3 – 2( x+ y +z ) = x- 2x + 1 + y -2y +1 + z-2z +1 = (x-1)+ (y-1) +(z-1) 0 Dấu(=)xảy ra khi x=y=z=1 2) chứng minh rằng :a) ;b) c) Hãy tổng quát bài toángiảia) Ta xét hiệu = = = Vậy Dấu bằng xảy ra khi a=bb)Ta xét hiệu = VậyDấu bằng xảy ra khi a = b =cc)Tổng quát 3) Chứng minh (m,n,p,q ta đều có m+ n+ p+ q+1( m(n+p+q+1) Giải: (luôn đúng)Dấu bằng xảy ra khi 4) Cho a, b, c, d,e là các số thực chứng minh rằng a) b) c) Giải: a) (bất đẳng thức này luôn đúng) Vậy (dấu bằng xảy ra khi 2a=b) b) Bất đẳng thức cuối đúng. Vậy Dấu bằng xảy ra khi a=b=1 c) Bất đẳng thức đúng vậy ta có điều phải chứng minh5) Chứng minh rằng: Giải: a2b2(a2-b2)(a6-b6) 0 a2b2(a2-b2)2(a4+ a2b2+b4) 0Bất đẳng thứccuối đúng vậy ta có điều phải chứng minh 6) cho x.y =1 và x>y Chứng minh Giải: vì :xy nên x- y 0 x2+y2 ( x-y) x2+y2- x+y 0 x2+y2+2- x+y -2 0 x2+y2+()2- x+y -2xy 0 vì x.y=1 nên 2.x.y=2(x-y-)2 0 Điều này luôn luôn đúng . Vậy ta có điều phải chứng minh7) 1)CM: P(x,y)= 2)CM: (

Text

9 tháng 1 2018

Bài này cũng dễ mà:

Áp dụng BĐT Cô-si, ta có:

\(y+z+1\ge3\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{y+z+1}{3}\ge\sqrt[3]{yz}\)

\(\Rightarrow\)\(\dfrac{x}{\sqrt[3]{yz}}\ge\dfrac{3x}{y+z+1}\)

\(\Rightarrow\)\(\sum\dfrac{x}{\sqrt[3]{yz}}\ge\sum\dfrac{3x}{y+z+1}\)

\(\sum\dfrac{3x}{y+z+1}=\sum\dfrac{3x^2}{xy+xz+x}\)

Áp dụng BĐT Cauchy -Schwaz:

\(\sum\dfrac{3x^2}{xy+xz+x}\ge\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\)

Mà:

\(xy+yz+xz\le x^2+y^2+z^2\)(BĐT phụ)

\(\Rightarrow\)\(2\left(xy+yz+xz\right)\le2\left(x^2+y^2+z^2\right)=6\)

Áp dụng BĐT Bunhicopski:

\(\left(x+y+z\right)^2\le3\left(x^2+y^2+z^2\right)=9\)

\(\Rightarrow x+y+z\le3\)

\(\Rightarrow2\left(xy+yz+xz\right)+x+y+z\le6+3=9\)

\(\Rightarrow\)\(\dfrac{3\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x+y+z}\ge\dfrac{3\left(x+y+z\right)^2}{9}\ge\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+xz\left(ĐPCM\right)\)

Dấu "=" xảy ra \(\Leftrightarrow\)x=y=z=1

9 tháng 1 2018

@Lightning Farron vào thể hiện đẳng cấp đi anh zai :))

15 tháng 10 2017

ÁP dụng AM-GM:

\(\sum\dfrac{a^2}{\sqrt{1-a^2}}=\sum\dfrac{a^3}{\sqrt{\left(1-a^2\right).a^2}}\ge\sum\dfrac{a^3}{\dfrac{1}{2}\left(1-a^2+a^2\right)}=2\sum a^3=2\left(đpcm\right)\)

Dấu = không xảy ra

15 tháng 12 2017

help me plz

thank you so much

4 tháng 12 2017

theo bđt cauchy schwarz ta có

\(\left\{{}\begin{matrix}\dfrac{2\sqrt{x}}{x^3+y^2}\le\dfrac{2\sqrt{x}}{2\sqrt{x^3y^2}}=\dfrac{1}{xy}\\\dfrac{2\sqrt{y}}{y^3+z^2}\le\dfrac{2\sqrt{y}}{2\sqrt{y^3z^2}}=\dfrac{1}{yz}\\\dfrac{2\sqrt{z}}{z^3+x^2}\le\dfrac{2\sqrt{z}}{2\sqrt{z^3y^2}}=\dfrac{1}{zy}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}\le\dfrac{\dfrac{1}{x^2}+\dfrac{1}{y^2}}{2}+\dfrac{\dfrac{1}{y^2}+\dfrac{1}{z^2}}{2}+\dfrac{\dfrac{1}{z^2}+\dfrac{1}{x^2}}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}\)\(\Rightarrow dpcm\)

23 tháng 7 2018

Câu hỏi của Anh Tú Dương - Toán lớp 10 | Học trực tuyến