K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 6 2019

\(x+y+xy=15\)

\(\Leftrightarrow x+y+xy+1=16\)

\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=16\)

\(\Leftrightarrow\left(y+1\right)\left(x+1\right)=16\)

Áp dụng bất đẳng thức AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\)ta có :

\(\left(y+1\right)\left(x+1\right)\le\frac{\left(x+y+2\right)^2}{4}\)

\(\Leftrightarrow\left(x+y+2\right)^2\ge4\left(x+1\right)\left(y+1\right)=64\)

\(\Leftrightarrow x+y+2\ge8\)

\(\Leftrightarrow x+y\ge6\)

Áp dụng bất đẳng thức Cauchy-Schwarz dạng engel :

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{6^2}{2}=18\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=3\)

11 tháng 6 2019

@ Phương @ 

Bất đẳng thức AM-GM là cho hai số không âm.

Ở bài toán này (x+1), (y+1) không phải là hai số không âm . Nếu em muốn áp dụng thì phải nói rõ ra:

"Áp dụng bất đẳng thức:

\(ab\le\frac{\left(a+b\right)^2}{4}\)với mọi a, b"

Cm: \(ab\le\frac{\left(a+b\right)^2}{4}\Leftrightarrow\left(a-b\right)^2\ge0\) đúng với mọi a, b

11 tháng 6 2016

\(x+y+xy+1=16\Rightarrow\left(x+1\right).\left(y+1\right)=16.\)

Với mọi a,b lớn hơn 0 ta luôn có : \(\left(a+b\right)^2\ge4ab\Rightarrow\frac{\left(a+b\right)^2}{4}\ge ab\)

Áp dụng với a = x +1  , b = y +1 Ta có : \(\frac{\left(x+y+2\right)^2}{4}\ge\left(x+1\right).\left(y+1\right)=16\) 

                                                             => \(\left(x+y+2\right)^2\ge64\)

                                                             => \(x+y+2\ge\sqrt{64}=8\Rightarrow x+y\ge6\)( do x, y > 0)

Ta có : \(\left(x+y+2\right)^2\ge64\Rightarrow x^2+y^2+4+2xy+4x+4y\ge64\)

=> \(P\ge64-4-2\left(x+y+xy\right)+2\left(x+y\right)\ge18\)

Vậy Pmin = 18 khi x = y = 3 .

12 tháng 6 2016

đoạn cuối mình đánh nhầm dấu " - " thành dấu " + "

\(P\ge64-4-2\left(x+y+xy\right)-2\left(x+y\right)=18..\)

1 tháng 12 2017

x2+y2+4/x2=8

=>x4+x2y2+4-8x2=0

=>x4-8x2+16=12-x2y2

=>(x2-4)2=12-x2y2

=>x2y2 ≤ 12 => |xy| ≤ \(\sqrt{12}=2\sqrt{3}\)

=>min xy \(\ge-2\sqrt{3}\)

xy min khi: x=2, y=\(-\sqrt{3}\)

Ta có : \(x^2+y^2+z^2-xy-yz-zx=\frac{1}{2}.2.\left(x^2+y^2+z^2-xy-yz-zx\right)\)

\(=\frac{1}{2}\left[\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2\right]\ge0\)\(\Rightarrow x^2+y^2+z^2\ge xy+yz+xz\)

Đẳng thức xảy ra khi \(x=y=z\)

19 tháng 5 2019

12=4(x2+y2+xy)= 3(x+y)2+(x-y)2>= 3(x+y)2
=> (x+y)2<=4 => Max, Min

9 tháng 8 2020

100x100=

5 tháng 10 2015

Có: \(x^2+y^2\ge2\sqrt{x^2y^2}=2\left|xy\right|\ge2xy\Rightarrow xy\le\frac{x^2+y^2}{2}\)

\(x^2+y^2\ge2\left|xy\right|\ge-2xy\Rightarrow xy\ge-\frac{x^2+y^2}{2}\)

\(4=x^2+y^2-xy\le x^2+y^2+\frac{x^2+y^2}{2}=\frac{3}{2}\left(x^2+y^2\right)\Rightarrow x^2+y^2\ge\frac{8}{3}\)

\(4=x^2+y^2-xy\ge x^2+y^2-\frac{x^2+y^2}{2}=\frac{1}{2}\left(x^2+y^2\right)\Rightarrow x^2+y^2\le8\)

Tìm cách chỉ ra dấu bằng trong từng trường hợp.

 

4 tháng 9 2017

cho x^2+y^2+z^2=1. Tim max xy+yz+2xz? | Yahoo Hỏi & Đáp

4 tháng 9 2017

Ta có: \(xy+yz+2xz\le k\left(x^2+y^2+z^2\right)\left(1\right)\)

Tức cần tìm \(k>0\) để \((1)\) đúng, 

 \(\left(1\right)\Leftrightarrow ky^2-y\left(x+z\right)+kx^2+kz^2-2xz\ge0\)

Coi đây là tam thức bậc hai ẩn \(y\) thì tìm \(\Delta< 0\forall x,z\), có:

\(\Delta=\left(1-4k^2\right)\left(x^2+z^2\right)+2\left(1+4k\right)xz\)

Bất đẳng thức trên đối xứng \(x,z\) nên dự đoán \(P_{Max}\) khi \(x=z\)

Thay \(x=z=1\Rightarrow2k^2-2k-1=0\Rightarrow k=\frac{1+\sqrt{3}}{2}>0\)

Hay \(P_{Max}=3\cdot\frac{1+\sqrt{3}}{2}\)