K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Bài 2:

a) Áp dụng BĐT AM - GM ta có:

\(\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)=\dfrac{1}{4a}+\dfrac{1}{4b}\) \(\ge2\sqrt{\dfrac{1}{4^2ab}}=\dfrac{2}{4\sqrt{ab}}=\dfrac{1}{2\sqrt{ab}}\)

\(\ge\dfrac{1}{a+b}\) (Đpcm)

b) Trừ 1 vào từng vế của BĐT ta được BĐT tương đương:

\(\left(\frac{x}{2x+y+z}-1\right)+\left(\frac{y}{x+2y+z}-1\right)+\left(\frac{z}{x+y+2z}-1\right)\le\frac{-9}{4}\)

\(\Leftrightarrow-\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\le-\frac{9}{4}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

Áp dụng BĐT phụ \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}\) ta có:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\)

\(\ge\dfrac{9}{2x+y+z+x+2y+z+x+y+2z}=\dfrac{9}{4\left(x+y+z\right)}\)

\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow\dfrac{x}{2x+y+z}+\dfrac{y}{x+2y+z}+\dfrac{z}{x+y+2z}\le\dfrac{3}{4}\) (Đpcm)

3 tháng 7 2017

Bài 1:

Áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:

\(VT\ge\dfrac{\left(a+b\right)^2}{a-1+b-1}=\dfrac{\left(a+b\right)^2}{a+b-2}\)

Nên cần chứng minh \(\dfrac{\left(a+b\right)^2}{a+b-2}\ge8\)

\(\Leftrightarrow\left(a+b\right)^2\ge8\left(a+b-2\right)\)

\(\Leftrightarrow a^2+2ab+b^2\ge8a+8b-16\)

\(\Leftrightarrow\left(a+b-4\right)^2\ge0\) luôn đúng

1 tháng 2 2020

a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5

=x^5-y^5=VP

=>dpcm

2 tháng 2 2020

Áp dụng BĐT Cô-si ta có:

\(xy\left(x^2+y^2\right)=\frac{1}{2}.2xy\left(x^2+y^2\right)\le\frac{1}{2}.\frac{\left(2xy+x^2+y^2\right)^2}{4}\)

\(=\frac{1}{2}.\frac{\left(x+y\right)^4}{4}=2\)

Dấu = xảy ra khi x = y = 1

https://diendantoanhoc.net/topic/119823-cho-xy2-ch%E1%BB%A9ng-minh-r%E1%BA%B1ng-xyx2-y2%E2%80%8B-2/

2 tháng 2 2020

Bài này áp dụng BĐT Cô-si nhưng thử thế này:

Ta thấy x,y đều là số nguyên dương nên có 2 TH:

=> x+y=2=>0<xy<1(1)

Nếu 2xy(x2+y2<  1 (2)

=>0<2xy(x2+y2< \(\frac{\left(x+4\right)}{4}\) =4

=> 0< xy (x+ y2)<2 

Nhân (1) và (2) theo vế:

Ta có: x2y2 (x2+ y2)<2

đpcm.

Dấu "=" xảy ra khi x=y=1

2 tháng 2 2020
  • @Achana cậu đang thắc mắc chỗ 2xy(x2+y2 1
  • =)) chỗ đó cậu hãy sửa nếu là ta có vì đó là 1 TH còn ở trên nếu ở dòng thứ 2 thì cậu viết là Ta thấy x,y đều là số nguyen dương nên ta có 2 TH:
  • Ta có:
30 tháng 3 2018

1) 2( a2 + b2 ) ≥ ( a + b)2

<=> 2a2 + 2b2 - a2 - 2ab - b2 ≥ 0

<=> a2 - 2ab + b2 ≥ 0

<=> ( a - b )2 ≥ 0 ( luôn đúng )

=> đpcm

2) Áp dụng BĐT Cô-si cho 2 số dương x , y , ta có :

a + b ≥ \(2\sqrt{ab}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}\) ≥ 2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\) ) ≥ \(2\sqrt{xy}\)2\(\sqrt{\dfrac{1}{x}.\dfrac{1}{y}}\)

=> ( x + y)( \(\dfrac{1}{x}+\dfrac{1}{y}\)) ≥ 4

=> \(\dfrac{1}{x}+\dfrac{1}{y}\)\(\dfrac{4}{x+y}\)

1 tháng 7 2019

a) \(x^2-3x+4\)

\(=x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\)

\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)

b) \(x^2-5x+8\)

\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{7}{4}\)

\(=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}>0\forall x\)

c) \(x^2+y^2+2x-4x-4y+5\)

\(=\left(x+y\right)^2-4\left(x+y\right)+4+1\)

\(=\left(x+y-2\right)^2+1>0\forall x\)