Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có ; A=((x+2012)/x)^2 + ((y+2012)/y)^2
hay A =((x+x+y)/x)^2+((y+x+y)/x)^2
=((2x+y)/x)^2 + ((2x+y)/x)^2
=(2+y/x)^2 + (2+x/y)^2
đặt x/y=k ta có ;
A=(2+k)^2 + (2+1/k)^2
=4+4k+k^2+4+4/k+1/k^2
\(\ge\)\(2\sqrt{4k.\frac{1}{4k}}\)+\(2\sqrt{k^2.\frac{1}{k^2}}\)\(+8\)(\(BAT\)\(DANG\)\(THUC\)\(COSI\))
\(=\)\(2\sqrt{1}+2\sqrt{16}+8=2+8+8=18\)
\(_{ }\)vậy max A = 18
Ta có: \(P=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
\(=\left(1-\frac{1}{x}\right)\left(1-\frac{1}{y}\right)\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=\frac{\left(x-1\right)\left(y-1\right)}{xy}\left(1+\frac{1}{xy}+\frac{1}{x}+\frac{1}{y}\right)\)
\(=\frac{xy}{xy}\left(1+\frac{1}{xy}+\frac{1}{xy}\right)\)
\(=1+\frac{2}{xy}\)
Lại có: \(xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)
\(\Rightarrow P=1+\frac{2}{xy}\ge1+8=9\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
2.
Áp dụng bất đẳng thức Cauchy - schwarz ( hay còn gọi là bất đẳng thức Cosi ):
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}=\frac{\left(x+y+z\right)^2}{x+y+z+3}=\frac{9}{3+3}=\frac{9}{6}=\frac{3}{2}\)
Dấu "=" xảy ra khi x = y = z = 1
1:
Áp dụng bất đẳng thức Cô si:
\(x\left(y+\frac{x}{1+y}\right)+y\left(z+\frac{y}{1+z}\right)+z\left(x+\frac{z}{1+x}\right)\)
\(=\left(x+y+z\right)\left[\left(y+\frac{x}{1+y}\right)+\left(z+\frac{y}{1+z}\right)+\left(x+\frac{z}{1+x}\right)\right]\)
\(=1\left[\left(x+y+z\right)+\left(\frac{x}{1+y}+\frac{y}{1+z}+\frac{z}{1+x}\right)\right]\)
\(=1\left[1+\left(\frac{x+y+z}{1+y+1+z+1+x}\right)\right]\)
\(=1\left[1+\left(\frac{1}{3+\left(x+y+z\right)}\right)\right]\)
\(=1\left[1+\frac{1}{4}\right]\)
\(=1+\frac{5}{4}=\frac{9}{4}\)
Dấu "=" xảy ra khi x = y = z = \(\frac{1}{3}\)
\(P=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)=1+\frac{1}{x}+\frac{1}{y}+\frac{1}{xy}=1+\frac{2}{xy}\ge1+\frac{2}{\frac{\left(x+y\right)^2}{4}}=9\)
Dấu "=" xảy ra <=> x = y = 1/2
Vậy min P = 9 đạt tại x = y = 1/2
\(P=\left(1+\frac{1}{x}\right)\left(1+\frac{1}{y}\right)\)
\(=\left(1+\frac{x+y}{x}\right)\left(1+\frac{x+y}{y}\right)\)
\(=\left(1+1+\frac{y}{x}\right)\left(1+1+\frac{x}{y}\right)\)
\(=4+\frac{2y}{x}+\frac{2x}{y}+1=5+\frac{2y}{x}+\frac{2x}{y}\)
Áp dụng BĐT cô si cho 3 số dương ta được :
\(5+\frac{2y}{x}+\frac{2x}{y}\ge5+2\sqrt{\frac{2y}{x}.\frac{2x}{y}}=9\)
Dấu "=" xảy ra khi \(\frac{2y}{x}=\frac{2x}{y}\Leftrightarrow x^2=y^2\Leftrightarrow x=y=\frac{1}{2}\left(x,y>0;x+y=1\right)\)
\(A=\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2\)
Ta co:\(x+\frac{1}{x}=\left(\frac{1}{x}+4x\right)-3x\ge2\sqrt{\frac{1}{x}\cdot4x}-3x=4-3x\left(AM-GM\right)\)
Tuong tu:\(y+\frac{1}{y}=4-3y\)
Ta co:\(A\ge\left(4-3x\right)^2+\left(4-3y\right)^2\)
\(=16-24x+9x^2+16-24y+9y^2\)
\(=32-24\left(x+y\right)+9\left(x^2+y^2\right)\)
Ap dung bat dang thuc phu:\(\frac{\left(x+y\right)^2}{4}\le\frac{x^2+y^2}{2}\Rightarrow x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)
Khi do,ta co:
\(A\ge32-24\cdot1+9\cdot\frac{1}{2}=\frac{25}{2}\)
Dau bang xay ra khi va chi khi:\(x=y=\frac{1}{2}\)
P/S:E ko chac dau ah,e ms lm quen vs no thoi
\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)
\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)
\(\le2+\frac{4.1006^2}{2012^2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)
\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
...
một khu đất hình chữ nhật có chu vi bằng 65 chiều rộng bằng 1/4 chiều dai, nguoi ta đao ao hết 62,5%diện tích khu đấtdiện tích còn lại để trồng hoa.Tính dienj tích tròng hoa?
\(A=\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
\(=1-\frac{1}{x^2}-\frac{1}{y^2}+\frac{1}{x^2y^2}\)
\(=1-\frac{x^2+y^2}{x^2y^2}+\frac{1}{x^2y}\)
\(=1-\frac{\left(x+y\right)^2-2xy}{x^2y^2}+\frac{1}{x^2y^2}\)
\(=1-\frac{1}{x^2y^2}+\frac{2xy}{x^2y^2}+\frac{1}{x^2y^2}\)
\(=1+\frac{2}{xy}\)
Lại có: \(4xy\le\left(x+y\right)^2\)
\(\Rightarrow xy\le\frac{1}{4}\)
\(\Rightarrow\frac{2}{xy}\ge8\)
\(\Rightarrow A\ge9\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy.......