K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2020

hình như bạn chép sai đề vì kết quả của vế trái mà tôi ra là: 2/căn bậc hai(3x +y) còn vế kia 2/căn x+căn y và mẫu của vế trái lại lớn hơn mẫu của vế phải và tử của 2 vế bằng nhau =>phân số vế trái bé hơn phân số của vế phải 

=>tôi không thể chứng minh được

29 tháng 2 2020

Bài 1 :

\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)

\(=\frac{10x}{5}+\frac{5y}{5}+\frac{30}{x}+\frac{5}{y}\)

\(=\frac{6x}{5}+\frac{4x}{5}+\frac{y}{5}+\frac{4y}{5}+\frac{30}{x}+\frac{5}{y}\)

\(=\left(\frac{6x}{5}+\frac{30}{x}\right)+\left(\frac{4x}{5}+\frac{4y}{5}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)

Áp dụng bất đẳng thức Cô - si cho 2 số không âm

\(\frac{6x}{5}+\frac{30}{x}\ge2\sqrt{\frac{6x}{5}.\frac{30}{x}}=2\sqrt{36}=2.6=12\left(1\right)\)

\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\left(2\right)\)

Theo đề bài ta có : \(x+y\ge10\) suy ra

\(\frac{4x}{5}+\frac{4y}{5}=\frac{4\left(x+y\right)}{5}\ge\frac{4.10}{5}=8\left(3\right)\)

Cộng (1) ; (2) và (3) vế với vế ta được :
\(\frac{6x}{5}+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}+\frac{4x}{5}+\frac{4y}{5}\ge12+2+8=22\)

Dấu " = " xay ra \(\Leftrightarrow\left\{{}\begin{matrix}\frac{6x}{5}=\frac{30}{x}\\\frac{y}{5}=\frac{5}{y}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x^2=25\\y^2=25\end{matrix}\right.\)

Vì x ; y dương nên \(\left(x;y\right)=\left(5;5\right)\)

29 tháng 2 2020

Bài 2 :

Đặt \(x=a+b=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

\(\Leftrightarrow x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Leftrightarrow x^3=2+\sqrt{5}+2-\sqrt{5}+\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}.x\)

\(\Leftrightarrow x^3=4+\sqrt[3]{4-5}.x\)

\(\Leftrightarrow x^3=4-3x\)

\(\Leftrightarrow x^3+3x-4=0\)

\(\Leftrightarrow x^3-x^2+x^2-x+4x-4=0\)

\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)+4\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x+4\right)=0\)

\(x^2+x+4=x^2+2.x.\frac{1}{2}+\frac{1}{4}+\frac{15}{4}=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\left(\forall x\right)\)

Nên \(x-1=0\Leftrightarrow x=1\)

Vậy \(x=a+b=1\)

\(\Rightarrow\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\left(đpcm\right)\)

Chúc bạn học tốt !!

9 tháng 6 2018

Sử dụng BĐT AM-GM, ta có: 

\(x^3+y^2\ge2yx\sqrt{x}\)

\(\Rightarrow\frac{2\sqrt{x}}{x^3+y^2}\le\frac{2\sqrt{x}}{2yx\sqrt{x}}=\frac{1}{xy}\)

Tương tự cộng lại suy ra: 

\(VT\le\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\le\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

15 tháng 5 2020

Bài 3 thì \(\le1\)

Bài 4 thì \(\ge\frac{3}{4}\) nhé

24 tháng 10 2019

Nhìn qua thấy bậc của bđt là không đồng bậc nên hơi căng đấy...

Chú ý: \(2019=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{x+y+z}{xyz}\Rightarrow xyz=\frac{x+y+z}{2019}\)

\(LHS=\Sigma_{cyc}\frac{\sqrt{2019x^2+1}+1}{x}=\Sigma_{cyc}\frac{\sqrt{\frac{x}{y}+\frac{x^2}{yz}+\frac{x}{z}+1}+1}{x}\)( thay \(2019=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\))

\(=\Sigma_{cyc}\frac{\sqrt{\left(\frac{x}{y}+1\right)\left(\frac{x}{z}+1\right)}+1}{x}=\Sigma_{cyc}\left[\sqrt{\frac{\left(\frac{x}{y}+1\right)}{x}.\frac{\left(\frac{x}{z}+1\right)}{x}}+\frac{1}{x}\right]\)

\(=\Sigma_{cyc}\sqrt{\left(\frac{1}{y}+\frac{1}{x}\right)\left(\frac{1}{z}+\frac{1}{x}\right)}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\frac{1}{2}\left[4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\right]+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(=3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{3\left(xy+yz+zx\right)}{xyz}=\frac{3\left(xy+yz+zx\right)}{\frac{\left(x+y+z\right)}{2019}}=\frac{6057\left(xy+yz+zx\right)}{x+y+z}\)

\(\le\frac{6057.\frac{\left(x+y+z\right)^2}{3}}{x+y+z}=2019\left(x+y+z\right)\)(đpcm)

Đẳng thức xảy ra khi \(x=y=z=\sqrt{\frac{3}{2019}}\)

P/s: Check hộ t phát:3

24 tháng 10 2019

Đặt \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\)thì bài toán thành

Cho: \(ab+bc+ca=2019\)

Chứng minh:

\(\sqrt{2019+a^2}+\sqrt{2019+b^2}+\sqrt{2019+c^2}+\left(a+b+c\right)\le2019\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Ta có:

\(VT=\sqrt{ab+bc+ca+a^2}+\sqrt{ab+bc+ca+b^2}+\sqrt{ab+bc+ca+c^2}+\left(a+b+c\right)\)

\(VT=\sqrt{\left(a+b\right)\left(a+c\right)}+\sqrt{\left(b+a\right)\left(b+c\right)}+\sqrt{\left(c+a\right)\left(c+b\right)}+\left(a+b+c\right)\)

\(\le3\left(a+b+c\right)\)

\(VP=\left(ab+bc+ca\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=2\left(a+b+c\right)+\left(\frac{ab}{c}+\frac{bc}{a}+\frac{ca}{b}\right)\)

\(\ge3\left(a+b+c\right)\)

Tới đây bí :(

11 tháng 5 2017

Bài 2: 

\(a^4+b^4\ge a^3b+b^3a\)

\(\Leftrightarrow a^4-a^3b+b^4-b^3a\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

ta thấy : \(\orbr{\orbr{\begin{cases}\left(a-b\right)^2\ge0\\\left(a^2+ab+b^2\right)\ge0\end{cases}}}\Leftrightarrow dpcm\)

Dấu " = " xảy ra khi a = b

tk nka !!!! mk cố giải mấy bài nữa !11

27 tháng 3 2019

1/Thêm 6 vào 2 vế,ta cần c/m:

\(\left(x^4+1+1+1\right)+\left(y^4+1+1+1\right)\ge8\)

Thật vậy,áp dụng BĐT AM-GM cho cái biểu thức trong ngoặc,ta được:

\(VT\ge4\left(x+y\right)=4.2=8\) (đpcm)

Dấu "=" xảy ra khi x = y = 1 (loại x = y = -1 vì không thỏa mãn x + y = 2)

10 tháng 8 2017

hi kết bạn nha

16 tháng 5 2020

Sửa lại cái đề hộ: a,b,c là số thực dương nha :v (Bài 4) ý

23 tháng 5 2020

Bắn giúp mình mấy câu kia vs. PLS!!!

14 tháng 1 2020

Theo đề ra : x,y,z>0

Nên áp dụng BĐT cô si cho 3 số là 1;1 và x+3y ta được :

\(x+3y+1+1\ge3\sqrt[3]{\left(x+3y\right).1.1}\)

\(\Rightarrow\sqrt[3]{\left(x+3y\right).1.1}\le\frac{x+3y+1+1}{3}\)

\(\Leftrightarrow\sqrt[3]{x+3y}\le\frac{x+3y+2}{3}\)(1)

Tương tự ta cũng có được :

\(\sqrt[3]{y+3z}\le\frac{y+3z+2}{3}\) (2) \(\sqrt[3]{z+3x}\le\frac{z+3x+2}{3}\)(3)

Ta cộng vế theo vế của (1) ; (2) và (3) ta được: \(\sqrt[3]{x+3y}+\sqrt[3]{y+3z}+\sqrt[3]{z+3x}\le\frac{x+y+z+3\left(x+y+z\right)}{3}=\frac{\frac{3}{4}+3.\frac{3}{4}+6}{3}=3\)

Vậy GTLN của P là 3 khi x=y=z=\(\frac{1}{4}\)