K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 4 2020

A=x3+y3+2xy

<=> A=(x3+y3)+2xy

<=> A=(x+y)(x2-x+1)+2xy

mà x+y=2 => A=2(x2-x+1) +2xy

=> MinA=2xy

11 tháng 7 2016

\(A=x^3+y^3=2xy\)

\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)

\(=2\left(x^2+y^2-xy\right)\)

\(\Rightarrow2\left(x^2+y^2-xy\right)=2xy\)

\(\Rightarrow x^2+y^2-xy=2xy\)

\(\Rightarrow x^2+y^2-2xy=xy\)

\(\Rightarrow\left(x-y\right)^2=xy\)

\(\left(x-y\right)^2\ge0\Rightarrow xy\ge0\)

Do đó GTNN của A là 0.

11 tháng 7 2016

A = x3 + y3

= (x + y).(x2 - xy + y2)

= 2.(x2 - xy + y2)

Mà A = 2xy

=> 2.(x2 - xy + y2) = 2xy

=> x2 - xy + y2 = xy

=> x2 - xy - xy + y2 = 0

=> x2 - 2xy + y2 = 0

=> (x - y)2 = 0

Mà (x - y)2 \(\ge\)0

=> GTNN của A là 0 <=> x - y = 0 <=> x = y

4 tháng 6 2019

#)Giải :

a, Ta có : \(x^2-y^2\ge\frac{\left(x+y\right)^2}{2}=2\)

=> Min = 2 khi x = y = 1

                 

-Trả Lời:

a,Ta có:

      \(x+y=2\)

\(\Rightarrow x^2+2xy+y^2=4\)

\(\Leftrightarrow x^2+y^2=4-2xy\)

\(\Rightarrow4-2xy\)nhỏ nhất

\(\Rightarrow xy\)lớn nhất

Mà \(x+y=2\Rightarrow x,y\)Không thể là 2 số âm

Vì ta cần \(xy\) lớn nhất nên \(x,y\)không thể khác dấu

\(\Rightarrow\)Ta chỉ còn một trường hợp \(x,y\)đều dương và \(x+y=2\)

\(\Rightarrow xy\)lớn nhất khi và chỉ khi \(x=2;y=0\)và \(x=0;y=2\)

@#Chúc bạn học tốt#@

Nhớ k mình nha. Thank you!

Còn phần b mình không biết làm, mong bạn thông cảm.

2 tháng 9 2018

1) +) ta có : \(A=2x^2+9y^2-6xy-6x-12y+2018\)

\(=x^2+9y^2+4-6xy+4x-12y+x^2-10x+25+1989\)

\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1989\ge1989\)

\(\Rightarrow A_{min}=1989\) khi \(x=5;y=\dfrac{7}{3}\)

câu này mk sửa đề chút nha

+) ta có : \(B=-x^2+2xy-4y^2+2x+10y-8\)

\(=-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)+5\)

\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)

\(\Rightarrow B_{max}=5\) khi \(y=2;x=3\)

2) a) ta có : \(x^2+y^2=5=\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\)

\(\Leftrightarrow xy=2\)

ta có : \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=9\)

b) ta có : \(x^2+y^2=15=\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\)

\(\Leftrightarrow xy=-5\)

ta có : \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=5^3+3\left(-5\right).5=50\)

1 tháng 6 2019

\(2a\)\(:\)\(x+y=2\)

\(\Rightarrow x^2+2xy+y^2=4\)

\(\Rightarrow x^2+y^2=4-2xy\)

\(\Rightarrow4-2xy\)nhỏ nhất 

\(\Rightarrow xy\)lớn nhất 

Mà x + y = 2 \(\Rightarrow\)x , y không thể là 2 số âm

vì ta cần xy lớn nhất nên x , y không thể khác dấu

\(\Rightarrow\)ta chỉ còn trường hợp x , y đều dương và x + y = 2 

\(\Rightarrow xy\)lớn nhất khi và chỉ khi x = 2 ; y= 0 và x = 0 ; y = 2

không chắc nữa

23 tháng 9 2016

A chỉ đạt max

B=(x^2+y^2+1-2xy+2x-2y)+(x^2-4x+4)-10

B=(x-y+1)^2+(x-2)^2-10\(\ge\)-10

C=((x^2+y^2-2xy)-10(x-y)+25)+3(y^2-2y+1)+4

C=(x-y-5)^2+3(y-1)^2+4\(\ge\)4

22 tháng 10 2020

\(A=4x^2+y^2+xy+4x+2y+3=4x^2+x\left(y+4\right)+\frac{\left(y+4\right)^2}{16}+y^2-\frac{\left(y+4\right)^2}{16}+2y+3\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{16y^2-y^2-8y-16+32y+48}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15y^2+24y+32}{16}\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y^2+\frac{24}{15}y+\frac{16}{25}\right)+\frac{112}{5}}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y+\frac{4}{5}\right)^2+\frac{112}{5}}{16}\ge\frac{\frac{112}{5}}{16}=\frac{7}{5}\)Đẳng thức xảy ra khi \(\hept{\begin{cases}2x+\frac{y+4}{4}=0\\y+\frac{4}{5}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)

\(B=-x^2-y^2-2xy=-\left(x+y\right)^2\le0\)

Đẳng thức xảy ra khi x = -y

11 tháng 12 2019

Bài 1 :

Ta có : a + b + c = 0

\(\Leftrightarrow\)a + b = - c

Ta có : a3 + b3 + c3 

= ( a3 + b3 ) + c3

= ( a + b )3 - 3ab . ( a + b ) + c3 ( 1 )

Thay a + b = - c vào ( 1 ) , ta được :

- c3 - 3ab . ( - c ) + c3 = 3ab

Hay a3 + b3 + c3 = 3ab ( đpcm )