Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^3+y^3=2xy\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(=2\left(x^2+y^2-xy\right)\)
\(\Rightarrow2\left(x^2+y^2-xy\right)=2xy\)
\(\Rightarrow x^2+y^2-xy=2xy\)
\(\Rightarrow x^2+y^2-2xy=xy\)
\(\Rightarrow\left(x-y\right)^2=xy\)
\(\left(x-y\right)^2\ge0\Rightarrow xy\ge0\)
Do đó GTNN của A là 0.
#)Giải :
a, Ta có : \(x^2-y^2\ge\frac{\left(x+y\right)^2}{2}=2\)
=> Min = 2 khi x = y = 1
-Trả Lời:
a,Ta có:
\(x+y=2\)
\(\Rightarrow x^2+2xy+y^2=4\)
\(\Leftrightarrow x^2+y^2=4-2xy\)
\(\Rightarrow4-2xy\)nhỏ nhất
\(\Rightarrow xy\)lớn nhất
Mà \(x+y=2\Rightarrow x,y\)Không thể là 2 số âm
Vì ta cần \(xy\) lớn nhất nên \(x,y\)không thể khác dấu
\(\Rightarrow\)Ta chỉ còn một trường hợp \(x,y\)đều dương và \(x+y=2\)
\(\Rightarrow xy\)lớn nhất khi và chỉ khi \(x=2;y=0\)và \(x=0;y=2\)
@#Chúc bạn học tốt#@
Nhớ k mình nha. Thank you!
Còn phần b mình không biết làm, mong bạn thông cảm.
1) +) ta có : \(A=2x^2+9y^2-6xy-6x-12y+2018\)
\(=x^2+9y^2+4-6xy+4x-12y+x^2-10x+25+1989\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1989\ge1989\)
\(\Rightarrow A_{min}=1989\) khi \(x=5;y=\dfrac{7}{3}\)
câu này mk sửa đề chút nha
+) ta có : \(B=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2+y^2+1-2xy-2x+2y\right)-3\left(y^2-4y+4\right)+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\le5\)
\(\Rightarrow B_{max}=5\) khi \(y=2;x=3\)
2) a) ta có : \(x^2+y^2=5=\left(x+y\right)^2-2xy=5\Leftrightarrow9-2xy=5\)
\(\Leftrightarrow xy=2\)
ta có : \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=9\)
b) ta có : \(x^2+y^2=15=\left(x-y\right)^2+2xy=15\Leftrightarrow25+2xy=15\)
\(\Leftrightarrow xy=-5\)
ta có : \(x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=5^3+3\left(-5\right).5=50\)
\(2a\)\(:\)\(x+y=2\)
\(\Rightarrow x^2+2xy+y^2=4\)
\(\Rightarrow x^2+y^2=4-2xy\)
\(\Rightarrow4-2xy\)nhỏ nhất
\(\Rightarrow xy\)lớn nhất
Mà x + y = 2 \(\Rightarrow\)x , y không thể là 2 số âm
vì ta cần xy lớn nhất nên x , y không thể khác dấu
\(\Rightarrow\)ta chỉ còn trường hợp x , y đều dương và x + y = 2
\(\Rightarrow xy\)lớn nhất khi và chỉ khi x = 2 ; y= 0 và x = 0 ; y = 2
không chắc nữa
\(A=4x^2+y^2+xy+4x+2y+3=4x^2+x\left(y+4\right)+\frac{\left(y+4\right)^2}{16}+y^2-\frac{\left(y+4\right)^2}{16}+2y+3\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{16y^2-y^2-8y-16+32y+48}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15y^2+24y+32}{16}\)\(=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y^2+\frac{24}{15}y+\frac{16}{25}\right)+\frac{112}{5}}{16}=\left(2x+\frac{y+4}{4}\right)^2+\frac{15\left(y+\frac{4}{5}\right)^2+\frac{112}{5}}{16}\ge\frac{\frac{112}{5}}{16}=\frac{7}{5}\)Đẳng thức xảy ra khi \(\hept{\begin{cases}2x+\frac{y+4}{4}=0\\y+\frac{4}{5}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)
\(B=-x^2-y^2-2xy=-\left(x+y\right)^2\le0\)
Đẳng thức xảy ra khi x = -y
A=x3+y3+2xy
<=> A=(x3+y3)+2xy
<=> A=(x+y)(x2-x+1)+2xy
mà x+y=2 => A=2(x2-x+1) +2xy
=> MinA=2xy