K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x^4-2x^2+1\right)+\left(y^4-2y^2+1\right)+\left(z^4-2z^2+1\right)=0\)

\(\Leftrightarrow\)\(\left(x^2-1\right)^2+\left(y^2-1\right)^2+\left(z^2-1\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}\left(x-1\right)\left(x+1\right)=0\\\left(y-1\right)\left(y+1\right)=0\\\left(z-1\right)\left(z+1\right)=0\end{cases}}\)\(\Rightarrow\)\(x,y,z\in\left\{1;-1\right\}\)

Mà \(\hept{\begin{cases}x^{2022}\ge0\forall x\\y^{2020}\ge0\forall y\\z^{2018}\ge0\forall z\end{cases}}\) nên P nhận giá trị không đổi khi \(x,y,z\in\left\{1;-1\right\}\)

\(\Rightarrow\)\(P=1+1+1=3\)

28 tháng 1 2020

Đặt \(x=a+1;y=b+1;z=c+1\Rightarrow0\le a,b,c\le2\)và \(a+b+c=3\)

Chứng minh : \(\left(a+1\right)^3+\left(b+1\right)^3+\left(c+1\right)^3\le36\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a^2+b^2+c^2\right)\le24\). Không mất tính tổng quát, giả sử \(2\ge a\ge b\ge c\ge0\) thì:

\(3a\ge a+b+c=3\Rightarrow2\ge a\ge1\Rightarrow\left(a-1\right)\left(a-2\right)\le0\)

Theo kết quả bài này thì \(a^2+b^2+c^2\le5\) (em làm thế này cho ngắn, lúc trình bày vô bài làm thì anh ghi cả chứng minh vô luôn nha!). Vậy ta chỉ cần chứng minh: \(a^3+b^3+c^3\le9\).

Ta có: \(a^3+b^3+c^3\le a^3+b^3+c^3+3bc\left(b+c\right)\)

\(=a^3+\left(b+c\right)^3=a^3+\left(3-a\right)^3\)

\(=9\left(a-1\right)\left(a-2\right)+9\le9\)

Đẳng thức xảy ra khi \(\left(a;b;c\right)=\left(2;1;0\right)\) và các hoán vị.

20 tháng 12 2019

EZ game

8 tháng 4 2017

Bài 1: Áp dụng BĐT AM-GM ta có:

\(1+x\ge2\sqrt{x}\)

\(x+y\ge2\sqrt{xy}\)

\(y+1\ge2\sqrt{y}\)

Cộng theo vế 3 BĐT trên ta có:

\(2\left(1+x+y\right)\ge2\left(\sqrt{x}+\sqrt{xy}+\sqrt{y}\right)\)

\(1+x+y\ge\sqrt{x}+\sqrt{xy}+\sqrt{y}\Leftrightarrow VT\ge VP\) 

Đẳng thức xảy ra khi  \(\hept{\begin{cases}1+x=2\sqrt{x}\\x+y=2\sqrt{xy}\\y+1=2\sqrt{y}\end{cases}}\Rightarrow x=y=1\)

Khi đó \(S=x^{2013}+y^{2013}=1^{2013}+1^{2013}=2\)

Bài 2: Vì \(\hept{\begin{cases}x,y,z\in\left[-1;3\right]\\x+y+z=3\end{cases}}\) nên 

\(0\le\left(x+1\right)\left(y+1\right)\left(z+1\right)+\left(3-x\right)\left(3-y\right)\left(3-z\right)\)

\(\Leftrightarrow0\le4\left(xy+yz+xz\right)-8\left(x+y+z\right)+28\)

\(\Leftrightarrow0\le2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le x^2+y^2+z^2+2\left(xy+yz+xz\right)+2\)

\(\Leftrightarrow x^2+y^2+z^2\le\left(x+y+z\right)^2+2\)

\(\Leftrightarrow x^2+y^2+z^2\le3^2+2=9+2=11\)

8 tháng 4 2017

Cảm ơn b Thắng Nguyễn

9 tháng 2 2020

Bằng một số bước tính toán cơ bản, chúng ta có được:

\(VT-VP=\Sigma_{cyc}\frac{x\left(x-z\right)^2}{2\left(x^2+z^2\right)}\ge0\)

9 tháng 2 2020

tth_old : t chán cái kiểu SOS gì đó của m rồi đấy.