Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(M=x^2y^2(x^2+y^2)=xy.xy(x^2+y^2)\)
\(\Leftrightarrow M=\frac{xy}{2}.2xy(x^2+y^2)\)
Áp dụng BĐT Cô-si ngược dấu:
\(2xy(x^2+y^2)\leq \left(\frac{2xy+x^2+y^2}{2}\right)^2=\left(\frac{(x+y)^2}{2}\right)^2=\frac{(x+y)^4}{4}=\frac{2^4}{4}=4\)
\(xy\leq \left(\frac{x+y}{2}\right)^2=\left(\frac{2}{2}\right)^2=1\)
Do đó: \(M=\frac{xy}{2}.2xy(x^2+y^2)\leq \frac{1}{2}.4=2\)
Vậy \(M_{\max}=2\Leftrightarrow x=y=1\)
\(36=5\left(x^2+y^2\right)+8xy\le5\left(x^2+y^2\right)+4\left(x^2+y^2\right)\)
\(\Rightarrow9\left(x^2+y^2\right)\ge36\Rightarrow x^2+y^2\ge4\)
\(S_{min}=4\) khi \(x=y=\pm\sqrt{2}\)
\(36=x^2+y^2+4\left(x+y\right)^2\ge x^2+y^2\)
\(\Rightarrow S_{max}=36\) khi \(\left\{{}\begin{matrix}x+y=0\\x^2+y^2=36\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(3\sqrt{2};-3\sqrt{2}\right)\) và hoán vị
Ta có \(2xy\ge-\left(x^2+y^2\right)\to36=5x^2+5y^2+8xy\ge5x^2+5y^2+4\left(-x^2-y^2\right)=x^2+y^2.\)
Dấu bằng xảy ra khi \(x=-y=\pm3\sqrt{2}.\) Vậy giá trị lớn nhất là 36.