K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2016

Ta có \(2xy\ge-\left(x^2+y^2\right)\to36=5x^2+5y^2+8xy\ge5x^2+5y^2+4\left(-x^2-y^2\right)=x^2+y^2.\)
Dấu bằng xảy ra khi \(x=-y=\pm3\sqrt{2}.\)  Vậy giá trị lớn nhất là 36.

AH
Akai Haruma
Giáo viên
29 tháng 12 2017

Lời giải:

\(M=x^2y^2(x^2+y^2)=xy.xy(x^2+y^2)\)

\(\Leftrightarrow M=\frac{xy}{2}.2xy(x^2+y^2)\)

Áp dụng BĐT Cô-si ngược dấu:

\(2xy(x^2+y^2)\leq \left(\frac{2xy+x^2+y^2}{2}\right)^2=\left(\frac{(x+y)^2}{2}\right)^2=\frac{(x+y)^4}{4}=\frac{2^4}{4}=4\)

\(xy\leq \left(\frac{x+y}{2}\right)^2=\left(\frac{2}{2}\right)^2=1\)

Do đó: \(M=\frac{xy}{2}.2xy(x^2+y^2)\leq \frac{1}{2}.4=2\)

Vậy \(M_{\max}=2\Leftrightarrow x=y=1\)

NV
9 tháng 6 2020

\(36=5\left(x^2+y^2\right)+8xy\le5\left(x^2+y^2\right)+4\left(x^2+y^2\right)\)

\(\Rightarrow9\left(x^2+y^2\right)\ge36\Rightarrow x^2+y^2\ge4\)

\(S_{min}=4\) khi \(x=y=\pm\sqrt{2}\)

\(36=x^2+y^2+4\left(x+y\right)^2\ge x^2+y^2\)

\(\Rightarrow S_{max}=36\) khi \(\left\{{}\begin{matrix}x+y=0\\x^2+y^2=36\end{matrix}\right.\) \(\Rightarrow\left(x;y\right)=\left(3\sqrt{2};-3\sqrt{2}\right)\) và hoán vị

Câu 1: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)  là: .......Câu 2: Số nghiệm của phương trình x4 + x3 = -x3 + x + 2 là: .......Câu 3: Cho biểu thức \(A=\frac{x+16}{\sqrt{x}+3}\)Giá trị nhỏ nhất của biểu thức A bằng  ........Câu 4: Cho 2 số dương x; y thỏa mãn x + y = 2.Giá trị lớn nhất của B = 2xy(x2 + y2) là: ...........Câu 5: Nghiệm của phương...
Đọc tiếp

Câu 1: Cho x; y > 0 thỏa mãn x + y ≤ 1. Giá trị nhỏ nhất của biểu thức \(A=\frac{1}{x^2+y^2}+\frac{5}{xy}\)  là: .......

Câu 2: Số nghiệm của phương trình x4 + x3 = -x3 + x + 2 là: .......

Câu 3: Cho biểu thức \(A=\frac{x+16}{\sqrt{x}+3}\)
Giá trị nhỏ nhất của biểu thức A bằng  ........

Câu 4: Cho 2 số dương x; y thỏa mãn x + y = 2.
Giá trị lớn nhất của B = 2xy(x2 + y2) là: ...........

Câu 5: Nghiệm của phương trình\(\sqrt{2x+3}+\sqrt{x+1}=3x+2\sqrt{2x^2+5x+3}-16\)là x = .............

Câu 6: Đa thức dư trong phép chia đa thức x + x3 + x9 + x27 + x81 + x243 cho đa thức (x2 - 1) là ax + b.
Khi đó a + b = .......

Câu 7: Cho x, y thuộc N* thỏa mãn x + y = 11.
Giá trị lớn nhất của biểu thức A = xy là:

Câu 8: Số giá trị của a để hệ xy+x+y=a+1 và x2y+ y2x có nghiệm duy nhất là:

Câu 9: Viết số 19951995 dưới dạng 19951995 = a+ a+ a+ ...... + an.
Khi đó a12 + a22 + a32 + ...... + anchia cho 6 thì có số dư là ............

0