Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^3+y^3+xy=x^2+y^2\)
\(\Leftrightarrow\left(x+y-1\right)\left(x^2-xy+y^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+y=1\\x^2-xy+y^2=0\end{cases}}\)
- \(x^2-xy+y^2=0\Rightarrow x=y=0\Rightarrow P=\frac{5}{2}\).
- \(x+y=1\Rightarrow0\le x,y\le1\).
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\ge\frac{1}{2+\sqrt{y}}+\frac{2}{1+\sqrt{y}}\ge\frac{1}{2+1}+\frac{2}{1+1}=\frac{4}{3}\)
Dấu \(=\)xảy ra tại \(x=0,y=1\).
\(P=\frac{1+\sqrt{x}}{2+\sqrt{y}}+\frac{2+\sqrt{x}}{1+\sqrt{y}}\le\frac{1+\sqrt{x}}{2}+\frac{2+\sqrt{x}}{1}\le\frac{1+1}{2}+\frac{2+1}{1}=4\)
Dấu \(=\)xảy ra tại \(x=1,y=0\).
tìm Max và Min của P=\(x\sqrt{1+y}+y\sqrt{1+x}\) trong đó x, y là cá số thực không âm thỏa mãn x+y=1
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
*)Maximize : Áp dụng BĐT Cauchy-Schwarz ta có:
\(VT^2\le\left(1+1\right)\left(x+1+y+1\right)=2\left(x+y+2\right)\)
Và \(VP^2=\left(\sqrt{2}\left(x+y\right)\right)^2=2\left(x+y\right)^2\)
\(\Rightarrow2\left(x+y\right)^2\le2\left(x+y+2\right)\)
\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-2\le0\)
\(\Rightarrow\left(x+y-2\right)\left(x+y+1\right)\le0\)
\(\Rightarrow-1\le P=x+y\le2\)
Khi \(x=y=1\) thì \(P_{Max}=2\)
*)Minimize: Áp dụng BĐT Karamata ta có:
\(VT=\sqrt{2}\left(x+y\right)=\sqrt{x+1}+\sqrt{y+1}=VP\)
\(\ge\sqrt{0}+\sqrt{x+1+y+1}\)
\(\Rightarrow\sqrt{2}\left(x+y\right)\ge\sqrt{x+1+y+1}\)
\(\Rightarrow2\left(x+y\right)^2\ge\left(x+y\right)+2\)
\(\Rightarrow2\left(x+y\right)^2-\left(x+y\right)-2\ge0\)
\(\Rightarrow P=x+y\ge\frac{1+\sqrt{17}}{4}\)
Khi \(x=\frac{5+\sqrt{17}}{4};y=-1\) thì \(P_{Min}=\frac{1+\sqrt{17}}{4}\)
#Vỗ tay coi :))
Ta có điều kiện \(\hept{\begin{cases}y\ge-6\\x\ge-6\\x+y\ge0\end{cases}}\)
Theo đề bài thì: \(x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)
\(\Leftrightarrow P^2\le\left(1^2+1^2\right)\left(x+y+12\right)\)
\(\Leftrightarrow P^2-2P-24\ge0\)
\(\Leftrightarrow-4\le P\le6\)
\(\Leftrightarrow-4< P\le6\left(1\right)\)
Ta lại có:
\(\Leftrightarrow\left(x+y\right)^2=\left(\sqrt{x+6}+\sqrt{y+6}\right)^2\)
\(\Leftrightarrow P^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\)
\(\Leftrightarrow P^2-P-12=2\sqrt{\left(x+6\right)\left(y+6\right)}\ge0\)
\(\Leftrightarrow\left(P+3\right)\left(P-4\right)\ge0\)
\(\Leftrightarrow\orbr{\begin{cases}P\le-3\left(l\right)\\P\ge4\left(2\right)\end{cases}}\)
Từ (1) và (2) \(\Rightarrow4\le P\le6\)
Vậy GTNN là \(P=4\)đạt được khi \(\hept{\begin{cases}x=-6\\y=10\end{cases}}or\hept{\begin{cases}x=10\\y=-6\end{cases}}\)
GTLN là \(P=6\) đạt được khi \(x=y=3\)
Em ko chắc nhá!
Giả sử x = max{x;y}.Ta tìm max của A = x(y+1).
Ta có: \(x^2=1-y^2\Rightarrow x=\sqrt{1-y^2}\).
Do đó ta tìm max của \(A=\left(y+1\right)\sqrt{1-y^2}\).
Xét hiệu \(A^2-\frac{27}{16}=-\frac{1}{16}\left(2y-1\right)^2\left(4y^2+12y+11\right)\le0\)
Nên \(A\le\frac{3\sqrt{3}}{4}\). Đẳng thức xảy ra khi y = 1/2 khi đó \(x=\frac{\sqrt{3}}{2}\)
Vậy..
Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy
Sử dụng bất đẳng thức Cauchy để tìm.