K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2020

Ai giúp em với ạ

16 tháng 6 2020

1. Ta có: \(x^2-2xy-x+y+3=0\)

<=> \(x^2-2xy-2.x.\frac{1}{2}+2.y.\frac{1}{2}+\frac{1}{4}+y^2-y^2-\frac{1}{4}+3=0\)

<=> \(\left(x-y-\frac{1}{2}\right)^2-y^2=-\frac{11}{4}\)

<=> \(\left(x-2y-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=-\frac{11}{4}\)

<=> \(\left(2x-4y-1\right)\left(2x-1\right)=-11\)

Th1: \(\hept{\begin{cases}2x-4y-1=11\\2x-1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\y=-3\end{cases}}\)

Th2: \(\hept{\begin{cases}2x-4y-1=-11\\2x-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}\)

Th3: \(\hept{\begin{cases}2x-4y-1=1\\2x-1=-11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-3\end{cases}}\)

Th4: \(\hept{\begin{cases}2x-4y-1=-1\\2x-1=11\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=3\end{cases}}\)

Kết luận:...

18 tháng 7 2016

Bài 32: 

a) P=  \(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

      =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

      =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

       =   \(\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

        =  \(1+\sqrt{2}\)

b) Có:  \(x^2-2y^2=xy\)

\(\Leftrightarrow x^2-y^2-y^2-xy=0\)

\(\Leftrightarrow\left(x-y\right)\left(x+y\right)-y\left(y+x\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x-y-y\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x-2y=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=2y\end{cases}}}\)

Thay x=-y  ta có: Q=\(\frac{-y-y}{-y+y}\)=\(\frac{-2y}{0}\)(loại )

Thay x=2y ta có :   Q=\(\frac{2y-y}{2y+y}=\frac{y}{3y}=\frac{1}{3}\)

13 tháng 7 2018

\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{y-1}\right)+\left(x\sqrt{x}-y\sqrt{y}\right)=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow\left(\sqrt{x}-\sqrt{y}\right)\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x-1}+\sqrt{y-1}}+x+\sqrt{xy}+y\right)=0\)

\(\Leftrightarrow x=y\)

\(\Rightarrow S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)

16 tháng 7 2018

Tại sao từ:\(\left(\sqrt{x-1}-\sqrt{y-1}\right)\)  lại => đc: \(\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}\)??????????

14 tháng 1 2017

Ta có: \(\sqrt{x+1}+\sqrt{y-1}\le\sqrt{2\left(x+y\right)}\)

\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+8}\le\sqrt{2\left(x+y\right)}\)

\(\Leftrightarrow2\left(x-y\right)+10x-6y+8\le2\left(x+y\right)\)

\(\Leftrightarrow2\left(x-y\right)^2+8\left(x-y\right)+8\le0\)

\(\Leftrightarrow2\left(x-y+2\right)^2\le0\)

Dấu = xảy ra khi \(\hept{\begin{cases}x+1=y-1\\x-y+2=0\end{cases}\Leftrightarrow}y=x+2\)

Thế vào P ta được

\(P=x^4+\left(x+2\right)^2-5x-5\left(x+2\right)+2020\)

\(=x^4+2x^2-6x+2014\)

\(=\left(x^2-1\right)^2+3\left(x-1\right)^2+2010\ge2010\)

Vậy GTNN là  P = 2010 đạt được khi x = 1, y = 3

10 tháng 12 2017

Ta có: √x+1+√y−1≤√2(x+y)

⇔√2(x−y)2+10x−6y+8≤√2(x+y)

⇔2(x−y)+10x−6y+8≤2(x+y)

⇔2(x−y)2+8(x−y)+8≤0

⇔2(x−y+2)2≤0

Dấu = xảy ra khi {

x+1=y−1
x−y+2=0

⇔y=x+2

Thế vào P ta được

P=x4+(x+2)2−5x−5(x+2)+2020

=x4+2x2−6x+2014

=(x2−1)2+3(x−1)2+2010≥2010

Vậy GTNN là  P = 2010 đạt được khi x = 1, y = 3

19 tháng 2 2019

\(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\)(ĐK:\(x;y\ge1\))

\(\Leftrightarrow\sqrt{x-1}+x\sqrt{x}=\sqrt{y-1}+y\sqrt{y}\)

Xét x<y\(\Rightarrow\sqrt{x-1}< \sqrt{y-1};x\sqrt{x}< y\sqrt{y}\)

\(\Rightarrow VT< VP\)

TT xét x>y=>VT>VP

\(\Rightarrow x=y\)

\(\Rightarrow S=x^2+3x^2-2x^2-8x+5\)

\(S=2x^2-8x+5=2\left(x-2\right)^2-3\ge-3\)

"="<=>x=y=2(tm)