K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2020

Vì x,y là số thực dương nên theo BĐT Cosi ta có:

\(x+y\ge2\sqrt{xy}\) Dấu "=" xảy ra <=> x=y hay x+x+x2=15 => x=y=3

GT: x+y+xy=15 => xy=15-(x+y)

Do đó: \(P=x^2+y^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2-30+2\left(x+y\right)\ge\left(2\sqrt{xy}\right)^2-30+2\cdot2\sqrt{xy}\)

Dấu "=" xảy ra <=> x=y=3

Vậy \(min_P=4\cdot3^2-30+4\cdot3=18\Leftrightarrow x=y=3\)

25 tháng 4 2019

Biến đổi từ giả thiết

\(x^3+y^3+6xy\le8\)

\(\Leftrightarrow...\Leftrightarrow\left(x+y-2\right)\left(x^2-xy+y^2+2x+2y+4\right)\le0\)

\(\Leftrightarrow x+y-2\le0\)

(Do \(x^2-xy+y^2+2x+2y+4=\left(x-\frac{y}{2}\right)^2+\frac{3y^2}{4}+2x+2y+4>0\forall x;y>0\))

\(\Leftrightarrow x+y\le2\)

Và áp dụng các bđt \(\frac{1}{2ab}\ge\frac{2}{\left(a+b\right)^2}\)

                                 \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\left(a;b>0\right)\)

Khi đó \(P=\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{1}{ab}+ab\right)+\frac{3}{2ab}\)

               \(\ge\frac{4}{a^2+b^2+2ab}+2+\frac{6}{\left(a+b\right)^2}\)

                 \(=\frac{4}{\left(a+b\right)^2}+2+\frac{6}{\left(a+b\right)^2}\ge\frac{9}{2}\)

Dấu "=" <=> a= b = 1

23 tháng 4 2021

Từ giả thiết ta có :

\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)

ta có : \(Q=\frac{y+2}{x^2}+\frac{z+2}{y^2}+\frac{x+2}{z^2}\)

\(=\frac{\left(x+1\right)+\left(y+1\right)}{x^2}+\frac{\left(y+1\right)+\left(z+1\right)}{y^2}+\frac{\left(z+1\right)+\left(x+1\right)}{z^2}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\left(x+1\right)\left(\frac{1}{z^2}+\frac{1}{x^2}\right)+\left(y+1\right)\left(\frac{1}{x^2}+\frac{1}{y^2}\right)+\left(z+1\right)\left(\frac{1}{y^2}+\frac{1}{z^2}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(\ge\frac{2\left(x+1\right)}{zx}+\frac{2\left(y+1\right)}{xy}+\frac{2\left(z+1\right)}{yz}-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)-\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

\(=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+2\)

Áp dụng bđt \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Dấu " = " xảy ra khi và chỉ khi a = b = c

Ta có \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\ge3\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=3\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\sqrt{3}\)

Do đó : \(Q\ge\sqrt{3}+2\). Dấu " = " xảy ra 

\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{y}=\frac{1}{z}\\z+y+z=xyz\end{cases}\Leftrightarrow x=y=z=\sqrt{3}}\)

Vậy Min \(Q=\sqrt{3}+2\)khi \(x=y=z=\sqrt{3}\)

20 tháng 9 2019

\(P=\sqrt{\frac{1}{36}\left(11a+7b\right)^2+\frac{59\left(a-b\right)^2}{36}}+\sqrt{\frac{1}{36}\left(7a+11b\right)+\frac{59\left(a-b\right)^2}{36}}\)

\(=\sqrt{\frac{1}{16}\left(3a+5b\right)^2+\frac{5\left(a-b\right)^2}{16}}+\sqrt{\frac{1}{16}\left(5a+3b\right)^2+\frac{5\left(a-b\right)^2}{16}}\)

\(\ge\frac{1}{6}\left(11a+7b\right)+\frac{1}{6}\left(7a+11b\right)+\frac{1}{4}\left(3a+5b\right)+\frac{1}{4}\left(5a+3b\right)\)

\(=5\left(a+b\right)=5.2016=10080\)

23 tháng 9 2019

alibaba nguyễn Em kiểm tra lại bài làm của mình nhé! 

5 tháng 6 2017

Áp dụng nè : \(\frac{2}{x^2+y^2}+\frac{2}{2xy}\ge\frac{8}{\left(x+y\right)^2}\ge\frac{1}{2}\)

5 tháng 6 2017

khó was

19 tháng 10 2018

Ta có:

\(\sqrt{xy}\left(x-y\right)=x+y\Rightarrow\left(x+y\right)^2=xy\left(x-y\right)^2\)

đặt x+y=a và xy=b

\(\Rightarrow a^2=b\left(a^2-4b\right)\Rightarrow a^2=a^2b-4b^2\Rightarrow4b^2=a^2\left(b-1\right)\Rightarrow\frac{4b^2}{b-1}=a^2\)

Lại có:

\(\frac{b^2}{b-1}=\frac{b^2-1+1}{b-1}=b+1+\frac{1}{b-1}=b-1+\frac{1}{b-1}+2\ge2+2=4\)

\(\Rightarrow\frac{4b^2}{b-1}\ge16\Rightarrow a^2\ge16\Rightarrow a\ge4\Rightarrow x+y\ge4\)

Dấu bằng xảy ra khi \(x=2+\sqrt{2},y=2-\sqrt{2}\)

8 tháng 9 2017

Áp dụng bđt Svacsơ ta có :

\(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{x^2}{x+z}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

ta lại có : \(\left(x^2+y^2+z^2\right)\left(y^2+z^2+x^2\right)\ge\left(xy+yz+zx\right)^2\)( bunhiacopxki )

\(\Rightarrow x^2+y^2+z^2\ge\left|xy+yz+xz\right|\ge xy+yz+xz\)

\(\Rightarrow x^2+y^2+z^2+2xy+2yz+2xz\ge3xy+3yz+3zx\)

\(\Rightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)=3\)

\(\Rightarrow x+y+z\ge\sqrt{3}\)

\(\Rightarrow P\ge\frac{x+y+z}{2}\ge\frac{\sqrt{3}}{2}\) có GTNN là \(\frac{\sqrt{3}}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)

Vậy \(P_{min}=\frac{\sqrt{3}}{2}\) tại \(x=y=z=\frac{1}{\sqrt{3}}\)

22 tháng 2 2018

ta có x>=2y suy ra x-2y>=0

m=x^2/xy+y^2/xy điều kiện x,y khác 0

M=x/y+y/x

2M=2x/y+2y/x

2M=2.x/y+(-x+2y+x)/x

2m=2.(x-2y)/y+2.2y/x-(x-2y)/x+x/x

2m=2(x-2y)/y-(x-2y)/x+5

vì x-2y>=0=>2(x-2y)/y-(x-2y)/x+5>=5

2M>=5

2M>5/2

vậy M=5/2

chưa chắc đã đúg đôu đúg tk mk nha

22 tháng 2 2018

Đặt \(\frac{x}{y}=a\)

Vì \(x\ge2y>0\Rightarrow a\ge2\)

Khi đó \(P=\frac{x}{y}+\frac{y}{x}=a+\frac{1}{a}=\left(\frac{1}{a}+\frac{a}{4}\right)+\frac{3a}{4}\ge2\sqrt{\frac{1}{a}.\frac{a}{4}}+\frac{3a}{4}\ge1+\frac{3}{2}=\frac{5}{2}\)

Dấu " \(=\)" xảy ra \(\Leftrightarrow\)\(a=2\Leftrightarrow x=2y>0\)