Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2 + 3y2 = 5xy
=> 2x2 + 3y2 - 5xy = 0
=> 2 ( x2 - 2xy + y2 ) - xy + y2 = 0
=> 2 ( x - y ) 2 - y ( x - y ) = 0
=> ( x - y )[ 2( x - y ) - y ] = 0
=> ( x- y ) ( 2x - 2y - y ) = 0
=> ( x - y ) ( 2x - 3y ) = 0
TH1 : x - y = 0
=> x = y
Thay x = y vào \(\frac{x+2y}{3x-y}\)
=> \(\frac{x+2y}{3x-y}=\frac{y+2y}{3y-y}\)\(=\frac{3y}{2y}=\frac{3}{2}\)
TH2 : 2x - 3y = 0
=> 2x = 3y
=> \(\frac{x}{y}=\frac{3}{2}\)
=> x = \(\frac{3}{2}.y\)
Thay x = \(\frac{3}{2}.y\)vào \(\frac{x+2y}{3x-y}\)
=> \(\frac{x+2y}{3x-y}=\frac{\frac{3}{2}.y+2y}{3.\frac{3}{2}y-y}\)\(=\frac{\frac{7}{2}.y}{\frac{7}{2}.y}=1\)
\(\text{ Ta có:}13B=\left(4x^2+y^2\right)\left(4+9\right)\ge\left(2.2x+1.3y\right)^2=\left(4x+3y\right)^2=1\Rightarrow B_{min}=\frac{1}{13}\)
\(\text{Dấu "=" xảy ra khi:}x=\frac{1}{13};y=\frac{3}{13}\)
Áp dụng BĐT Bunhiacopxki, ta được :
\(\left(4x^2+y^2\right)\left(2^2+3^2\right)=\left[\left(2x\right)^2+y^2\right].\left(2^2+3^2\right)\ge\left[\left(2x\right).2+y.3\right]^2=\left(4x+3y\right)^2\)
\(\Leftrightarrow\left(4x^2+y^2\right)\cdot13\ge1\)
\(\Leftrightarrow4x^2+y^2\ge\frac{1}{13}\)
hay \(B\ge\frac{1}{13}\)