K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 1 2017

Do x>y>0 nên x+y\(\ne0\)

Ta có \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\) (1)

Mặt khác ,do x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)

Vậy: \(\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+y^2}\) (2)

Từ (1),(2) ta suy ra : \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)

19 tháng 11 2015

\(\left(x+y\right)^2=x^2+y^2+2xy>x^2+y^2\)

\(\frac{1}{\left(x+y\right)^2}<\frac{1}{x^2+y^2}\)

\(\frac{x-y}{\left(x+y\right)^2}<\frac{x-y}{x^2+y^2};vì:x-y>0\)nhân 2 vế với x+y

\(\frac{x-y}{x+y}<\frac{\left(x-y\right)\left(x+y\right)}{x^2+y^2};vì:x+y>0\)

22 tháng 2 2018

vì x>y>0 nên \(x+y\ne0\).Theo tính chất cơ bản của phân thức,ta có :

\(\dfrac{x-y}{x+y}=\dfrac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\dfrac{x^2-y^2}{x^2+2xy+y^2}\left(1\right)\)

Mặt khác,vì x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)

Vậy \(\dfrac{x^2-y^2}{x^2+2xy+y^2}< \dfrac{x^2-y^2}{x^2+y^2}\left(2\right)\) Từ \(\left(1\right),\left(2\right)\) ta suy ra : \(\dfrac{x-y}{x+y}< \dfrac{x^2-y^2}{x^2+y^2}\)

22 tháng 2 2018

chết, mik nhầm

3 tháng 6 2019

#Bạn_về_tìm_hiểu_các_BĐT_cơ_bản_như_AM-GM_hay_Cauchy-Schwarz_nhé.

Áp dụng BĐT Cauchy-Schwarz dạng phân thức:

\(\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)

\(''=''\Leftrightarrow x=y\)

3 tháng 6 2019

bạn có thể giải giúp mình về dạng AM_GM được không(do mình mới đọc vài cái cơ bản của dạng này nên chưa nắm rõ lắm)

1 tháng 6 2018

\(BĐT\Leftrightarrow\left(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\right)-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)

\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}-1\right)\left(\frac{x}{y}+\frac{y}{x}-2\right)\ge0\) (Luôn đúng vì \(\frac{x}{y}+\frac{y}{x}\ge2\forall x;y>0\))

19 tháng 3 2018

Đặt \(\dfrac{x}{y}+\dfrac{y}{x}=a\)\(\Rightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=a^2\Rightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}=a^2-2\)

Ta có \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4=a^2-2+4=a^2+2\)

\(3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)=3a\)

Ta có \(a^2+2-3a=a^2-2.a.\dfrac{3}{2}+\dfrac{9}{4}-\dfrac{1}{4}=\left(a-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\)

lạ có \(\dfrac{x}{y}+\dfrac{y}{x}-2=\dfrac{x^2}{xy}-\dfrac{2xy}{xy}+\dfrac{y^2}{xy}=\dfrac{\left(x-y\right)^2}{xy}\ge0\)

\(\Rightarrow\dfrac{x}{y}+\dfrac{y}{x}\ge2\)\(\Rightarrow a\ge2\Rightarrow a-\dfrac{3}{2}\ge\dfrac{1}{2}\)\(\Rightarrow\left(a-\dfrac{3}{2}\right)^2\ge\dfrac{1}{4}\Rightarrow\left(a-\dfrac{3}{2}\right)^2-\dfrac{1}{4}\ge0\)

\(\Rightarrow a^2+2-3a\ge0\Rightarrow a^2+2\ge3a\Rightarrow\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

20 tháng 3 2018

\(\left\{{}\begin{matrix}x;y>0\\\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\end{matrix}\right.\) \(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

từ (2) có \(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2.\dfrac{x}{y}.\dfrac{y}{x}+\dfrac{y^2}{x^2}\right)+2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge0\)

\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\ge0\)

\(\Leftrightarrow\left[\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\right]-\left[\left(\dfrac{x}{y}+\dfrac{y}{x}\right)-2\right]\ge0\)

\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)\ge0\) (3)

từ (1) có \(\dfrac{x}{y}+\dfrac{y}{x}=\left(\sqrt{\dfrac{x}{y}}-\sqrt{\dfrac{y}{x}}\right)^2+2\ge2\) (4)

từ (4) ; \(\left\{{}\begin{matrix}\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)>0\\\dfrac{x}{y}+\dfrac{y}{x}-2\ge0\end{matrix}\right.\) (I)

từ (I) => (3) đúng mọi phép biến đổi là <=> đẳng thức khi \(\dfrac{x}{y}=\dfrac{y}{x}\Rightarrow x=y\)=> dpcm

NV
4 tháng 5 2020

\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}\)

Dấu "=" xảy ra khi \(x=y=z\)

Hoặc:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2\left(y+z\right)}{4\left(y+z\right)}}=x\)

\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\) ; \(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

Cộng vế với vế ta có đpcm