K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LT
0
TG
4
3 tháng 9 2017
Áp dụng BĐT Bunhiacốpxki dạng phân thức : x²/a + y²/b ≥ (x+y)²/(a+b)
Ta có :
3/(xy+yz+zx) + 2/(x²+y²+z²) = 6/(2xy+2yz+2zx) + 2/(x²+y²+z²)
≥ (√6+√2)²/(x+y+z)² = (√6+√2)² > 14 (đpcm).
3 tháng 9 2017
Cách 2 : Ta đặt xy+yz+zx = t ( t>0 ) thì x²+y²+z² = (x+y+z)² - 2(xy+yz+zx) = 1-2t.
Mặt khác ta lại có: 3(xy+yz+zx) ≤ (x+y+z)² = 1 ⇔ xy+yz+zx ≤ 1/3 hay t ≤ 1/3.
Ta đưa bài toán về việc c/m: 3/t + 2/(1-2t) ≥ 14 với 0 < t ≤ 1/3.
Biến đổi tương đương ta được : 3(1-2t) + 2t ≥ 14t(1-2t)
⇔ 28t² - 18t + 3 ≥ 0
⇔ 3(1-3t)² + t² ≥ 0 (đúng).
Tuy nhiên dấu "=" không xảy ra,
do đó 3/(xy+yz+zx) + 2/(x²+y²+z²) > 14.
ML
21 tháng 8 2016
\(\frac{x}{x+2}+\frac{y}{y+2}=2-2\left(\frac{1}{x+2}+\frac{1}{y+2}\right)\le2-2.\frac{4}{x+2+y+2}=2-\frac{8}{4-z}\)
Cần CM: \(2-\frac{8}{4-z}+\frac{z}{z+8}\le\frac{1}{3}\)
\(\Leftrightarrow\frac{8\left(z-2\right)^2}{3\left(4-z\right)\left(z+8\right)}\ge0\)
bđt trên đúng do \(4-z=\left(x+2\right)+\left(y+2\right)>0\)
TT
1
6 tháng 4 2016
x^3 +y^3 + z^3 >=3
x*x^2 + y*y^2 + z*z^2 >=3
(x*y*z)*(x^2 + y^2 + z^2)>=3
(x*y*z) *3>=3
mà x,y,z >0
=> x^3 + y^3 + z^3 >= 3
Cho mình hỏi thật sự \(\ge\)9/2 hay là \(\ge\) 8/3 vậy vì mình chỉ tính ra \(\ge\) 8/3 thôi.