K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2016

Đặt  \(P=\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=x+y+\frac{2}{x+y}\)  (do  \(xy=1\)  )

Khi đó, ta có thể biến đổi biểu thức  \(P\)  quay về dạng có thể dùng bđt  \(AM-GM\)  hay nói cách khác, đây là số mệnh của nó đã được an bài đằng sau cách cửa biết nói.

\(P=\left[\left(x+y\right)+\frac{4}{x+y}\right]-\frac{2}{x+y}\ge2\sqrt{\left(x+y\right).\frac{4}{\left(x+y\right)}}=4-\frac{2}{x+y}\)

Mặt khác, do  \(x+y\ge2\sqrt{xy}=2\)  (theo bđt  \(AM-GM\)  cho hai số thực  \(x,y\)không âm)

nên  \(-\frac{1}{x+y}\ge-\frac{1}{2}\)  hay nói cách khác, \(-\frac{2}{x+y}\ge-1\)

Do đó,  \(P\ge4-1=3\)  (đpcm)

Dấu  \("="\)  xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}x,y>0\\xy=1\\x=y\end{cases}\Leftrightarrow}\)  \(x=y=1\)

6 tháng 7 2016

Áp Dụng Cosi 3 số Ta phân tích B thành :

\(B=\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}+\frac{y^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}-\frac{1+y}{4}-\frac{1+x}{4}-1\)

\(=\left(\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\right)+\left(\frac{y^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\right)-\left(\frac{1+y}{4}+\frac{1+x}{4}\right)-1\)

Ta có

\(\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3}{1+y}.\frac{1+y}{4}.\frac{1}{2}}=\frac{3x}{2}\)

\(\frac{y^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{y^3}{1+x}.\frac{1+x}{4}.\frac{1}{2}}=\frac{3y}{2}\)

\(\Rightarrow B=\left(\frac{x^3}{1+y}+\frac{1+y}{4}+\frac{1}{2}\right)+\left(\frac{y^3}{1+x}+\frac{1+x}{4}+\frac{1}{2}\right)-\left(\frac{1+y}{4}+\frac{1+x}{4}\right)-1\ge\)

\(\frac{3y}{2}+\frac{3x}{2}-\left(\frac{1+y}{4}+\frac{1+x}{4}\right)-1=\frac{3y+3x}{2}-\frac{1+y+1+x}{4}-1=\frac{6x+6y-1-y-1-x}{4}\)

\(=\frac{5y+5x-2}{4}-1\)

Ta có 

\(x+y\ge2\sqrt{xy}\)

mà xy=1

\(\Rightarrow x+y\ge2\)

\(\Rightarrow5\left(x+y\right)\ge10\)

\(\Rightarrow5x+5y-2\ge8\)

\(\Rightarrow\frac{5x+5y-2}{4}\ge2\)

\(\Rightarrow\frac{5x+5y-2}{4}-1\ge1\)

Mà \(B\ge\frac{5x+5y-2}{4}-1\)

\(\Rightarrow B\ge\frac{5x+5y-2}{4}-1\ge1\Rightarrow B\ge1\left(dpcm\right)\)

Chúc bạn học tốt nha 

T I C K nha

6 tháng 7 2016

(x^3)/(1+y)=(x^3)/(1+y)+(1+y)/4+1/2-(1+y)/4-1/2

Áp dụng bất đẳng thức Cosy cho 3 số:(x^3)/(1+y)  (1+y)/4 và 1/2 ta có

(x^3)/(1+y) +(1+y)/4 +1/2 \(\ge3\sqrt[3]{\left(\frac{x^3}{4\cdot2}\right)}=\frac{3}{2}\cdot x\)

CMTT ta có B>=3/2*(x+y)-(1+y+1+x)/4-1=3/2*(x+y)-(2+x+y)/4-1

ta có x+y>=\(2\sqrt{xy}\)=2

~>B>=3/2*2-1-1=1~> ĐPCM

16 tháng 12 2019

...\(\Leftrightarrow\frac{x+y+2}{\left(x+1\right)\left(y+1\right)}\ge\frac{2}{1+\sqrt{xy}}\) \(\Leftrightarrow\left(x+y+2\right)\left(1+\sqrt{xy}\right)\ge2\left(x+1\right)\left(y+1\right)\)

\(\Leftrightarrow x\sqrt{xy}+y\sqrt{xy}+2\sqrt{xy}+x+y+2\ge2xy+2x+2y+2\)\

\(\Leftrightarrow\sqrt{xy}\left(x-2\sqrt{xy}+y\right)-\left(x-2\sqrt{xy}+y\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\)

Vì bđt cuối luôn đúng \(\forall xy\ge1\) mà các phép biến đổi trên là tương đương nên bđt đầu luôn đúng

Dấu "=" xảy ra \(\Leftrightarrow x=y\)

AH
Akai Haruma
Giáo viên
25 tháng 5 2019

Lời giải:
Áp dụng BĐT AM-GM ta có:

\(\text{VT}=x-\frac{x}{x^2+z}+y-\frac{y}{y^2+x}+z-\frac{z}{z^2+y}=(x+y+z)-\left(\frac{x}{x^2+z}+\frac{y}{y^2+x}+\frac{z}{z^2+y}\right)\)

\(\geq (x+y+z)-\left(\frac{x}{2\sqrt{x^2z}}+\frac{y}{2\sqrt{y^2x}}+\frac{z}{2\sqrt{z^2y}}\right)=(x+y+z)-\frac{1}{2}\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)(1)\)

Từ giả thiết \(xy+yz+xz=3xyz\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Cauchy-Schwarz:

\(3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}\Rightarrow x+y+z\geq 3(2)\)

\(\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)^2\leq (\frac{1}{x}+\frac{1}{y}+\frac{1}{z})(1+1+1)=9\)

\(\Rightarrow \left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}+\frac{1}{\sqrt{z}}\right)\leq 3(3)\)

Từ \((1);(2);(3)\Rightarrow \text{VT}\geq 3-\frac{1}{2}.3=\frac{3}{2}\)

Mặt khác: \(\text{VP}=\frac{1}{2}(\frac{1}{x}+\frac{1}{y}+\frac{1}{z})=\frac{3}{2}\)

Do đó \(\text{VT}\geq \text{VP}\) (đpcm)

Dấu "=" xảy ra khi $x=y=z=1$


14 tháng 4 2020

Bất đẳng thức bị ngược dấu rồi!

Ta có: \(x+yz=x\left(x+y+z\right)+yz=\left(x+y\right)\left(z+x\right)\)

Tương tự ta có: \(y+zx=\left(x+y\right)\left(y+z\right);z+xy=\left(y+z\right)\left(z+x\right)\)

Áp dụng BĐT Côsi cho hai số dương ta có:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)

\(\Rightarrow\text{Σ}_{cyc}\frac{x}{x+yz}=\frac{\text{Σ}_{cyc}\left[x\left(y+z\right)\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(=\frac{2\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)+xyz\right]}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}=2+\frac{2xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

\(\le2+\frac{2xyz}{8xyz}=2+\frac{1}{4}=\frac{9}{4}\)

Đẳng thức xảy ra\(\Leftrightarrow x=y=z=\frac{1}{3}\)

5 tháng 10 2018

Vào câu trả lời tương tự đi

7 tháng 11 2018

\(a)\)\(x+xy+y=-6\)

\(\Leftrightarrow\)\(\left(x+1\right)\left(y+1\right)=-5\)

Lập bảng xét TH ra là xong 

\(b)\) CM : \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\frac{x+y}{xy}\ge\frac{4}{x+y}\)

\(\Leftrightarrow\)\(\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\)\(x^2+2xy+y^2-4xy\ge0\)

\(\Leftrightarrow\)\(\left(x-y\right)^2\ge0\) ( luôn đúng ) 

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y\)

Xin thêm 1 slot đi hok về làm cho -,- 

7 tháng 11 2018

\(b)\) CM : \(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)

\(x^2+y^2\ge\frac{\left(x+y\right)^2}{1+1}=\frac{1}{2}\left(x+y\right)^2\) ( bđt Cauchy-Schawarz dạng Engel ) 

Ta có : 

\(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+2017\ge\frac{\left(x+\frac{1}{x}+y+\frac{1}{y}\right)^2}{2}+2017\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}+2017=\frac{\left(2+\frac{4}{2}\right)^2}{2}+2017=2025\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1\)

Bài này còn có cách khác là sử dụng tính chất tổng 2 phân số nghịch đảo nhau nhá :)) 

Chúc bạn học tốt ~ 

24 tháng 12 2017

tiếp tục câu 2,vì máy bị lỗi nên phải tách ra:

Ta có:\(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-xz\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+xz+yz\right)\right).\)

Dó đó:\(x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(\left(x+y+z\right)^2-3\left(xy+yz+xz\right)+2010\right)\)

\(=\left(x+y+z\right)^3.\)(2)

TỪ \(\left(1\right),\left(2\right)\)suy ra \(P\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^3}=\frac{1}{x+y+z}.\)

Dấu \(=\)xảy ra khi \(x=y=z=\frac{\sqrt{2010}}{3}\)

24 tháng 12 2017

2)Ta có:

\(x\left(x^2-yz+2010\right)=x\left(x^2+xy+xz+1340\right)>0\)

Tương tự ta có:\(y\left(y^2-xz+2010\right)>0,z\left(z^2-xy+2010\right)>0\)

Áp dụng svac-xơ ta có:

\(P=\frac{x^2}{x\left(x^2-yz+2010\right)}+\frac{y^2}{y\left(y^2-xz+2010\right)}+\frac{z^2}{z\left(z^2-xy+2010\right)}\)

\(\ge\frac{\left(x+y+z\right)^2}{x^3+y^3+z^3-3xyz+2010\left(x+y+z\right)}.\)(1)