Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2y+2xy+10x+12y+26=0\)
\(\Leftrightarrow\left[\left(x^2+2xy+y^2\right)+\left(10x+10y\right)+25\right]+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left[\left(x+y\right)^2+10\left(x+y\right)+25\right]+\left(y+1\right)^2=0\)
\(\Leftrightarrow\left(x+y+5\right)^2+\left(y+1\right)^2=0\)
Vì \(\left(x+y+5\right)^2+\left(y+1\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y+5=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-1\end{cases}}}\)
Vậy \(x=-4;y=-1\)
Mình giải cho bạn ở http://olm.vn/hoi-dap/question/104690.html rồi nha
\(x^2+y^2+26+10x+2y=0\)
\(\Leftrightarrow\left(x^2+10x+25\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(x+5\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+5\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)( do \(\left(x+5\right)^2\ge0;\left(y+1\right)^2\ge0\))
\(\Leftrightarrow\hept{\begin{cases}x+5=0\\y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-5\\y=-1\end{cases}}\)
câu 1
a, 5x - x 2 + 2xy - 5y
= 5x - x 2 + xy + xy - 5y
= ( 5x - 5y ) - ( x2 - xy ) + xy
= 5 ( x-y ) - x(x-y ) + xy
= (5-x) ( x-y) + xy
mik làm dc mỗi câu a !
Đúng thù thì ❤️ giúp mik nha bạn. Thx bạn