Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nếu một trong 3 số x, y, z bằng 0 thì từ 2 đẳng thức đầu ta cũng suy ra 2 số còn lại bằng 0, trái với giả thiết cuối x + y + z khác 0.
Vậy cả 3 số x, y, z khác 0.
Vì \(x^2=yz\) và \(y^2=xz\) nên suy ra \(z=\frac{x^2}{y}=\frac{y^2}{x}\) => \(x^3=y^3\)
Suy ra \(x=y\). Thay vào 1 trong 2 đẳng thức đầu tiên ta suy ra: \(x^2=yz=x.z\). Do x khác 0 nên suy ra \(x=z\).
Vậy ta có \(x=y=z\).
Vậy \(\frac{\left(x+y+z\right)^{999}}{x^{222}y^{333}z^{444}}=\frac{\left(3x\right)^{999}}{x^{222}x^{333}x^{444}}=3^{999}\)
\(x^2=yz\Rightarrow\frac{x}{y}=\frac{z}{x}\)
\(y^2=xz\Rightarrow\frac{x}{y}=\frac{y}{z}\)
\(\Rightarrow\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}\)
Do x, y, z \(\ne\)0 \(\Rightarrow\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{y}=1\\\frac{y}{z}=1\\\frac{z}{x}=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\)
\(\Rightarrow\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(3x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{3^{999}.x^{999}}{x^{999}}=3^{999}\)
Vậy.............
Giả sử một trong 3 số x, y, z bằng 0 thì ta chứng minh được hai số còn lại bằng 0 (trái với x + y + z ≠ 0)
Do đó x, y, z khác 0
Ta có: \(x^2=yz\Leftrightarrow z=\frac{x^2}{y}\left(1\right)\)
\(y^2=xz\Leftrightarrow z=\frac{y^2}{x}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x^2}{y}=\frac{y^2}{x}\Leftrightarrow x^3=y^3\Leftrightarrow x=y\)
Thay x = y vào \(x^2=yz\Rightarrow y^2=yz\Leftrightarrow y^2-yz=0\Leftrightarrow y\left(y-z\right)=0\)
=> y = 0 hoặc y - z = 0
Do y khác 0 nên y - z = 0 <=> y = z <=> x = y = z
Thay x = y = z vào A ta có:
\(A=\frac{\left(x+y+z\right)^{999}}{x^{222}.y^{333}.z^{444}}=\frac{\left(x+x+x\right)^{999}}{x^{222}.x^{333}.x^{444}}=\frac{\left(3x\right)^{999}}{x^{999}}=\frac{3^{999}x^{999}}{x^{999}}=3^{999}\)
Đặt x^ 2 = yz (1) ; y ^2 = xz (2) ; z ^2 = xy (3)
Từ (1) => z= x^ 2 /y. Từ (2) => z = y ^2 /x => x^2 /y = y^2 /x => x ^3 = y ^3 => x = y (*)
Tương tự : Từ (1) => y =x^ 2 /z. Từ (3) => y = z^ 2 /x => x^ 2 /z = z^ 2 /x => x ^3 = z^3 => x = z(**)
Từ (*) và (**) suy ra x = y = z
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Đặt x^ 2 = yz (1) ; y ^2 = xz (2) ; z ^2 = xy (3)
Từ (1) => z= x^ 2 /y. Từ (2) => z = y ^2 /x => x^2 /y = y^2 /x => x ^3 = y ^3 => x = y (*)
Tương tự : Từ (1) => y =x^ 2 /z. Từ (3) => y = z^ 2 /x => x^ 2 /z = z^ 2 /x => x ^3 = z^3 => x = z(**)
Từ (*) và (**) suy ra x = y = z
CHÚC BẠN HỌC GIỎI
TK cho thằng này đi
Bạn tham khảo ở đây nhé.
Câu hỏi của Trịnh Hương Quỳnh - Toán lớp 7 - Học toán với OnlineMath
\(x^2=yz,y^2=xz,z^2=xy\Rightarrow x^2+y^2+z^2=xy+yz+zx\Leftrightarrow2x^2+2y^2+2z^2=2xy+2xz+2y\Leftrightarrow\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)
\(\Leftrightarrow x=y,y=z,x=z\Leftrightarrow x=y=z\)
\(x^2=yz\Leftrightarrow\frac{x}{y}=\frac{z}{x};y^2=xz\Leftrightarrow\frac{y}{z}=\frac{x}{y};z^2=xy\Leftrightarrow\frac{z}{x}=\frac{y}{z}\)
=>\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có: \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
=>x=y;y=z;z=x
=>x=y=z
Ta có: \(x^2=yz\Leftrightarrow\frac{x}{z}=\frac{y}{x}\)
Ta có :x2 = yz , y2 = xz , z2 = xy
=> x2.y2.z2=yz.xz.xy
=>x2.y2.z2=y2.z2.x2
=>xyz=yxz
=> x=y=z