Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=4\left(x-1\right)+\frac{25}{x-1}+4\ge2\sqrt{\frac{100\left(x-1\right)}{x-1}}+4=24\)
\(A_{min}=24\) khi \(x=\frac{7}{2}\)
\(25-4x^2\ge0\Leftrightarrow x^2\le\frac{25}{4}\Leftrightarrow\orbr{\begin{cases}x\le\frac{25}{4}\\x\ge\frac{-25}{4}\end{cases}\Leftrightarrow\frac{-25}{4}\le x\le\frac{25}{4}}\)
Bấm nhầm nút gửi
\(A=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)
Điều kiện
\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-\sqrt{5}\le x\le\sqrt{5}\\A\ge2x\end{cases}}\)
\(\Rightarrow A\ge-2\sqrt{5}\) (1)
Bình phương 2 vế ta được
\(5x^2-4Ax+A^2-5=0\)
Để phương trình theo x có nghiệm thì
\(\Delta'=\left(2A\right)^2-4.\left(A^2-5\right).5\ge0\)
\(\Leftrightarrow100-16A^2\ge0\)
\(\Leftrightarrow A\le\frac{5}{2}\)(2)
Từ (1) và (2) \(\Rightarrow-2\sqrt{5}\le A\le\frac{5}{2}\)
\(A=2x+\sqrt{5-x^2}\)
\(\Leftrightarrow A-2x=\sqrt{5-x^2}\)
Điều kiện
\(\hept{\begin{cases}5-x^2\ge0\\A-2x\ge0\end{cases}}\)
\(N=x^2+\frac{1000}{x}+\frac{1000}{x}\ge3\sqrt[3]{1000.1000}=300\)
dấu = khi x=10
Đặt \(\sqrt{x-4}=t\left(t\ge0\right)\Rightarrow x=t^2+4\)Khi đó \(A=\frac{t}{2t^2+8}\Rightarrow2At^2-t+8A=0\)
\(\Delta=1-64A^2\). Pt có nghiêm<=> \(\Delta\ge0\)\(\Leftrightarrow\)\(1-64A^2\ge0\)\(\Leftrightarrow\)\(A^2\le\frac{1}{64}\)\(\Leftrightarrow\)\(-\frac{1}{8}\le A\le\frac{1}{8}\)
Do đó \(MinA=\frac{-1}{8}\)khi \(t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(-\frac{1}{8}\right)^2}}{4.\left(-\frac{1}{8}\right)}=-2\)(loại)
\(MaxA=\frac{1}{8}khi\\ t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(\frac{1}{8}\right)^2}}{4.\frac{1}{8}}=2\)(thỏa)
\(\Rightarrow\sqrt{x-4}=2\Rightarrow x=8\)
Vậy MaxA=1/8 khi x=8
min trước nhé max mình đang nghĩ
ta có
ĐKXĐ \(x>=4\)
vì x>=4 => 2x>0 và \(\sqrt{x-4}>=0\)
=> \(\frac{\sqrt{x-4}}{2x}>=0\)
dấu = xảy ra <=> x=4
A= 4x-4+25/(x-1)-4
áp dụng cho 2 cái đầu tiên kìa
hình như sai rồi bạn ơi
dây tìm gtln