K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2019

Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo!

21 tháng 1 2019

Cho x > 0 , y > 0 và \(x+y\ge6\). Tìm GTNN của biểu thức P = 3x + 2y + \(\frac{6}{x}+\frac{8}{y}\)

Ta có : P = \(3x+2y+\frac{6}{x}+\frac{8}{y}\)

\(\Rightarrow P=\left[\frac{6}{x}+\frac{3}{2}x\right]+\left[\frac{8}{y}+\frac{1}{2}y\right]+(\frac{3}{2})(x+y)\)

\(\Rightarrow6+4+\frac{3}{2}\cdot6\)

\(\Rightarrow A\ge19\)

Vậy Amin = 19 => x = 2 với y = 4

1 tháng 2 2018

Áp dụng BĐT AM-GM:

\(P=3x+2y+\dfrac{6}{x}+\dfrac{8}{y}\)

\(=3x+\dfrac{12}{x}+2y+\dfrac{32}{y}-6\left(\dfrac{1}{x}+\dfrac{4}{y}\right)\)

\(=2\sqrt{3x\cdot\dfrac{12}{x}}+2\sqrt{2y\cdot\dfrac{32}{y}}-6\cdot\dfrac{\left(1+2\right)^2}{x+y}\)

\(=28-6\cdot\dfrac{\left(1+2\right)^2}{6}=19\)

\("=" \Leftrightarrow x=2;y=4\)

1 tháng 2 2018

Có sai đề k nhỉ ??

16 tháng 5 2018

Câu trả lời trước bị sai bucminh nên làm lại.

Ta có:Q=\(\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}=\dfrac{3x+2y}{6}+\dfrac{6}{3x+2y}\)vì xy=6

Đặt t=3x+2y => t\(\ge2\sqrt{2.y.3.x}\)=12

Theo bđt cô si và t \(\ge\)12 ta được :

Q=\(\left(\dfrac{t}{6}+\dfrac{24}{t}\right)-\dfrac{18}{t}\ge2\sqrt{\dfrac{t}{6}.\dfrac{24}{t}}-\dfrac{18}{t}=\dfrac{5}{2}\)

Đẳng thức xảy ra <=> x=2 và y=3

15 tháng 5 2018

\(Q=\dfrac{2}{x}+\dfrac{3}{y}+\dfrac{6}{3x+2y}\\ Q=\dfrac{2y+3x}{xy}+\dfrac{6}{3x+2y}\)

Áp dụng bất đẳng thức Cô si cho hai số không âm và thay xy=6 vào ta được

\(Q\ge2\sqrt{\dfrac{2y+3x}{6}\times\dfrac{6}{2y+3x}}\\ Q\ge2\)

Đẳng thức xảy ra <=> \(\left(3x+2y\right)^2\) =36 và xy=6

<=> x=2,y=3

13 tháng 4 2019

Ta có:\(\frac{3}{2}x+\frac{6}{x}\ge2\sqrt{\frac{3}{2}x.\frac{6}{x}}=6\)

\(\frac{y}{2}+\frac{8}{y}\ge2\sqrt{\frac{y}{2}.\frac{8}{y}}=4\)

\(\frac{3}{2}\left(x+y\right)\ge\frac{3}{2}.6=9\)

Cộng vế theo vế \(\Rightarrow A\ge19\)

"="<=>x=2;y=4

28 tháng 4 2019

mk co nen nghe ban than da tung phan boi mk ko... 

18 tháng 12 2019

Biết trước điểm rơi rồi thì quá EZ.

\(P=x+y+z+\frac{3}{x}+\frac{9}{2y}+\frac{4}{z}\)

\(=\left(\frac{3}{a}+\frac{3a}{4}\right)+\left(\frac{9}{2b}+\frac{b}{2}\right)+\left(\frac{4}{c}+\frac{c}{4}\right)+\left(\frac{a}{4}+\frac{b}{2}+\frac{3c}{4}\right)\)

\(\ge2\sqrt{\frac{3}{a}\cdot\frac{3a}{4}}+2\sqrt{\frac{9}{2b}\cdot\frac{b}{2}}+2\sqrt{\frac{4}{c}\cdot\frac{c}{4}}+\frac{a+2b+3c}{4}\)

\(\ge13\)

Dấu "=" xảy ra tại a=2;b=3;c=4