Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)
\(\Rightarrow\frac{1}{1+x}\ge\left(1-\frac{1}{1+y}\right)+\left(1-\frac{1}{1+z}\right)\)
\(=\frac{y}{1+y}+\frac{z}{1+z}\ge2\sqrt{\frac{yz}{\left(1+y\right)\left(1+z\right)}}\)
C/m tương tự cũng có \(\frac{1}{1+y}\ge2\sqrt{\frac{xz}{\left(1+x\right)\left(1+z\right)}}\)
\(\frac{1}{1+z}\ge2\sqrt{\frac{xy}{\left(1+x\right)\left(1+y\right)}}\)
Nhân 3 vế của các bất đẳng thức trên lại ta được
\(\frac{1}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\ge\frac{8xyz}{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\)
\(\Rightarrow1\ge8xyz\)
\(\Leftrightarrow xyz\le\frac{1}{8}\)
Dấu "='' khi \(x=y=z=\frac{1}{2}\)
Vậy .......
* GTLN
- Ta co: \(x^2+\left(x-2y\right)^2-2\left(x-2y\right)-4x+2018\)
- \(=x^2-4x+4+\left(x-2y\right)^2-2\left(x-2y\right).1+1+2013\)
- \(=\left(x-2\right)^2+\left(x-2y-1\right)^2+2013\)
- Vì \(\left(x-2\right)^2\ge0,\forall x\)
- \(\left(x-2y-1\right)^2\ge0,\forall x\)
- \(\Rightarrow\left(x-2\right)^2+\left(x-2y-1\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+\left(x-2y-1\right)^2+2013\ge2013\)
\(\Rightarrow\frac{2012}{\left(x-2\right)^2+\left(x-2y-1\right)^2+2013}\le\frac{2012}{2013}\)
\(\Rightarrow G\le\frac{2012}{2013}\)
Vậy Max G= 2012/2013 tại \(\hept{\begin{cases}x-2=0\\x-2y-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\2-2y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=\frac{1}{2}\end{cases}}}\)
\(P=a^2-4a+4+1=\left(a-2\right)^2+1\)
Ta có
\(\left(a-2\right)^2\ge0\Rightarrow\left(a-2\right)^2+1\ge1\)
\(\Rightarrow Min\left(P\right)=1\)
Có: \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ac}=....+2\frac{a+b+c}{abc}=.....\)