K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2016

Bài 1 :

Ta có :

\(n^n-n^2+n-1\)

\(=\left(n^n-1^n\right)-\left(n^2-n\right)\)

\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+n^{n-3}...+n^1+1\right)-\left(n-1\right)n\)

\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n+1-n\right)\)

\(=\left(n-1\right)\left(n^{n-1}+n^{n-2}+...+n^1+n^0-n\right)\)

Thấy \(n^{n-1}+n^{n-2}+...+n^1+n^0\)có \(n\)số hạng, nên khi trừ đi \(n\)cũng như trừ mỗi số hạng cho 1. ( Vì n số , mỗi số trừ đi 1 thì trừ tổng cộng là \(n.1=n\))

Do đó ta có :

\(=\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n^2-1\right)+\left(n-1\right)+\left(1-1\right)\right]\)

Nhận xét :

\(n^{n-1}-1=\left(n-1\right)\left(n^{n-2}+n^{n-3}+...+n+1\right)\)chia hết cho \(n-1\)

\(n^{n-2}-1=\left(n-1\right)\left(n^{n-3}+n^{n-4}+...+n+1\right)\)chia hết cho \(n-1\)


\(...\)

\(n-1\)chia hết cho \(n-1\)


\(1-1=0\)chia hết cho \(n-1\)

\(\Rightarrow\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n^2-1\right)+\left(n-1\right)+\left(1-1\right)\)chia hết cho \(n-1\)

\(\Rightarrow\left(n-1\right)\left[\left(n^{n-1}-1\right)+\left(n^{n-2}-1\right)+...+\left(n^2-1\right)+\left(n-1\right)+\left(1-1\right)\right]\)chia hết cho \(n-1\)

\(\Rightarrow n^n-n^2+n-1\)chia hết cho \(n-1\)

Vậy ...

Bài 2 :

Ta có :

\(\left(x-2\right)\left(x^2+2x+7\right)+2\left(x^2-4\right)-5\left(x-2\right)\)

\(=\left(x-2\right)\left(x^2+2x+7\right)+2\left(x-2\right)\left(x+2\right)-5\left(x-2\right)\)

\(=\left(x-2\right)\left[x^2+2x+7+2\left(x+2\right)-5\right]\)

\(=\left(x-2\right)\left(x^2+4x+6\right)\)

\(=\left(x-2\right)\left[\left(x^2+4x+4\right)+2\right]\)

\(=\left(x-2\right)\left[\left(x+2\right)^2+2\right]=0\)

Mà \(\left(x+2\right)^2+2\ge0+2=2>0\)

\(\Rightarrow x-2=0\)

\(\Rightarrow x=2\)

Vậy ...

9 tháng 7 2016

\(x^2+\frac{1}{x^2}=7\Leftrightarrow x^2+2+\frac{1}{x^2}=9\Leftrightarrow\left(x+\frac{1}{x}\right)^2=3^2.\)Do x > 0 nên \(x+\frac{1}{x}\)>0 và  \(x+\frac{1}{x}=3\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^3=27\Rightarrow x^3+\frac{1}{x^3}+3\cdot x\cdot\frac{1}{x}\left(x+\frac{1}{x}\right)=27\Rightarrow x^3+\frac{1}{x^3}+3\cdot3=27\Rightarrow x^3+\frac{1}{x^3}=18\)

\(\Rightarrow\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)=7\cdot18\Rightarrow x^5+\frac{1}{x^5}+x+\frac{1}{x}=126\Rightarrow x^5+\frac{1}{x^5}+3=126\Rightarrow x^5+\frac{1}{x^5}=123.\)

Vậy \(x^5+\frac{1}{x^5}\)là 1 số nguyên và bằng: 123

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
27 tháng 10 2019

Bài 1: Chỉ cần chú ý đẳng thức \(a^5+b^5=\left(a^2+b^2\right)\left(a^3+b^3\right)-a^2b^2\left(a+b\right)\) là ok! 

Làm như sau: Từ \(x^2+\frac{1}{x^2}=14\Rightarrow x^2+2.x.\frac{1}{x}+\frac{1}{x^2}=16\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2=16\). Do \(x>0\Rightarrow x+\frac{1}{x}>0\Rightarrow x+\frac{1}{x}=4\)

\(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)

\(=14\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)\)

\(=14\left(x+\frac{1}{x}\right)\left(x^2+\frac{1}{x^2}-1\right)-4\)

\(=14.4.\left(14-1\right)-4=724\) là một số nguyên (đpcm)

P/s: Lâu ko làm nên cũng ko chắc đâu nhé!

NV
26 tháng 12 2018

Do \(x>0:\)

\(x^2+\dfrac{1}{x^2}=7\Leftrightarrow x^2+2.x.\dfrac{1}{x}+\dfrac{1}{x^2}=9\Leftrightarrow\left(x+\dfrac{1}{x}\right)^3=9\Rightarrow x+\dfrac{1}{x}=3\)

\(\Rightarrow\left(x+\dfrac{1}{x}\right)^3=3^3\Leftrightarrow x^3+3x.\dfrac{1}{x}.\left(x+\dfrac{1}{x}\right)+\dfrac{1}{x^3}=27\)

\(\Leftrightarrow x^3+3.1.3+\dfrac{1}{x^3}=27\Leftrightarrow x^3+\dfrac{1}{x^3}=18\)

\(\Rightarrow\left(x^2+\dfrac{1}{x^2}\right)\left(x^3+\dfrac{1}{x^3}\right)=7.18\Leftrightarrow x^5+\dfrac{1}{x}+x+\dfrac{1}{x^5}=126\)

\(\Leftrightarrow x^5+3+\dfrac{1}{x^5}=126\Rightarrow x^5+\dfrac{1}{x^5}=123\)

NV
26 tháng 12 2018

Ở dòng đầu gõ nhầm xíu \(\left(x+\dfrac{1}{x}\right)^2=9\) chứ ko phải \(\left(x+\dfrac{1}{x}\right)^3=9\)

3 tháng 4 2021

a, \(B=\left(\frac{9-3x}{x^2+4x-5}-\frac{x+5}{1-x}-\frac{x+1}{x+5}\right):\frac{7x-14}{x^2-1}\)

\(=\left(\frac{9-3x}{\left(x-1\right)\left(x+5\right)}+\frac{\left(x+5\right)^2}{\left(x-1\right)\left(x+5\right)}-\frac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x+5\right)}\right):\frac{7\left(x-2\right)}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{9-3x+x^2+10x+25-x^2+1}{\left(x-1\right)\left(x+5\right)}.\frac{\left(x-1\right)\left(x+1\right)}{7\left(x-2\right)}\)

\(=\frac{35+7x}{x+5}\frac{x+1}{7\left(x-2\right)}=\frac{7\left(x+5\right)\left(x+1\right)}{7\left(x+5\right)\left(x-2\right)}=\frac{x+1}{x-2}\)

b, Ta có : \(\left(x+5\right)^2-9x-45=0\)

\(\Leftrightarrow x^2+10x+25-9x-45=0\Leftrightarrow x^2+x-20=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\Leftrightarrow\orbr{\begin{cases}x=4\\x=5\end{cases}}\)

TH1 : Thay x = 4 vào biểu thức ta được : \(\frac{4+1}{4-2}=\frac{5}{2}\)

TH2 : THay x = 5 vào biểu thức ta được : \(\frac{5+1}{5-2}=\frac{6}{3}=2\)

c, Để B nhận giá trị nguyên khi \(\frac{x+1}{x-2}\inℤ\Rightarrow x-2+3⋮x-2\)

\(\Leftrightarrow3⋮x-2\Rightarrow x-2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

x - 21-13-3
x315-1
3 tháng 4 2021

d, Ta có : \(B=-\frac{3}{4}\Rightarrow\frac{x+1}{x-2}=-\frac{3}{4}\)ĐK : \(x\ne2\)

\(\Rightarrow4x+4=-3x+6\Leftrightarrow7x=2\Leftrightarrow x=\frac{2}{7}\)( tmđk )

e, Ta có B < 0 hay \(\frac{x+1}{x-2}< 0\)

TH1 : \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow\hept{\begin{cases}x< -1\\x>2\end{cases}}}\)( ktm )

TH2 : \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow-1< x< 2}\)

17 tháng 9 2020

Bài 1.

a) 2x2 + 3( x - 1 )( x + 1 ) - 5x( x + 1 )

= 2x2 + 3( x2 - 1 ) - 5x2 - 5x

= 2x2 + 3x2 - 3 - 5x2 - 5x

= -5x - 3 

b) 4( x - 1 )( x + 5 ) - ( x - 2 )( x + 5 ) - 3( x - 1 )( x + 2 )

= 4( x2 + 4x - 5 ) - ( x2 + 3x - 10 ) - 3( x2 + x - 2 )

= 4x2 + 16x - 20 - x2 - 3x + 10 - 3x2 - 3x + 6

= 10x - 4

Bài 2.

a) ( 8 - 5x )( x + 2 ) + 4( x - 2 )( x + 1 ) + 2( x - 2 )( x + 2 ) = 0

<=> -5x2 - 2x + 16 + 4( x2 - x - 2 ) + 2( x2 - 4 ) = 0

<=> -5x2 - 2x + 16 + 4x2 - 4x - 8 + 2x2 - 8 = 0

<=> x2 - 6x = 0

<=> x( x - 6 ) = 0

<=> x = 0 hoặc x = 6

b) ( x + 3 )( x + 2 ) - ( x - 2 )( x + 5 ) = 0

<=> x2 + 5x + 6 - ( x2 + 3x - 10 ) = 0

<=> x2 + 5x + 6 - x2 - 3x + 10 = 0

<=> 2x + 16 = 0

<=> 2x = -16

<=> x = -8

Bài 3.

A = ( n2 + 3n - 1 )( n + 2 ) - n3 + 2

= n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2

= 5n2 + 5n

= 5n( n + 1 ) chia hết cho 5 ( đpcm )

B = ( 6n + 1 )( n + 5 ) - ( 3n + 5 )( 2n - 1 )

= 6n2 + 30n + n + 5 - ( 6n2 - 3n + 10n - 5 )

= 6n2 + 31n + 5 - 6n2 - 7n + 5

= 24n + 10

= 2( 12n + 5 ) chia hết cho 2 ( đpcm )

17 tháng 9 2020

bài 1:a,\(2x^2+3\left(x-1\right)\left(x+1\right)-5x\left(x+1\right)\)

\(=2x^2+3x^2-3-5x^2-5x\)

\(=-3-5x\)

b.\(4\left(x-1\right)\left(x+5\right)-\left(x-2\right)\left(x+5\right)-3\left(x-1\right)\left(x+2\right)\)

\(=4\left(x^2+4x-5\right)-\left(x^2+3x-10\right)-3\left(x^2+x-2\right)\)

\(=4x^2+16x-20-x^2-3x+10-3x^2-3x+6\)

\(=10x-4\)

\(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)

\(8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2+2x-2x-4\right)=0\)

\(-2x+16-5x^2+4x^2-4x-8+2x^2-8=0\)

\(x^2-6x=0\)

\(x\left(x-6\right)=0\)

\(\orbr{\begin{cases}x=0\\x-6=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=6\end{cases}}}\)