K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 10 2018

4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)

\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)

\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)

Tìm z thì dễ rồi

3 tháng 1 2017

Bài 2:

TH1: \(x\le-\frac{5}{2}\)

<=>\(-\left(x+\frac{5}{2}\right)+\frac{2}{5}-x=0\)<=>\(-x-\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(-\frac{21}{10}-2x=0\)

<=>\(-2x=\frac{21}{10}\)<=>\(x=\frac{-21}{20}\)(loại)

TH2: \(-\frac{5}{2}< x\le\frac{2}{5}\)

<=>\(x+\frac{5}{2}+\frac{2}{5}-x=0\)<=>\(\frac{29}{10}=0\)(loại)

TH3: \(x>\frac{2}{5}\)

<=>\(x+\frac{5}{2}+x-\frac{2}{5}=0\)<=>\(2x+\frac{21}{10}=0\)<=>\(2x=-\frac{21}{10}\)<=>\(x=-\frac{21}{20}\)(loại)

Vậy không có số x thỏa mãn đề bài

3 tháng 1 2017

Bài 1:

Vì \(\left(x-2\right)^2\ge0\) nên\(\left(x-2\right)^2\le0\) khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)

Bài 3:

Đặt \(\frac{x}{15}=\frac{y}{9}=k\Rightarrow\hept{\begin{cases}x=15k\\y=9k\end{cases}}\)

Theo đề bài: xy=15 <=> 15k.9k=135k2=15 <=> k2=1/9 <=> k=-1/3 hoặc k=1/3

+) \(k=-\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\left(-\frac{1}{3}\right).15=-5\\y=\left(-\frac{1}{3}\right).9=-3\end{cases}}\)

+) \(k=\frac{1}{3}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}.15=5\\y=\frac{1}{3}.9=3\end{cases}}\)

Vậy ...........

18 tháng 1 2016

Thi vòng 12 à bạn!!! Để mk chép đề mà làm 

26 tháng 5 2019

Ta có:  \(x^2+\frac{1}{x^2}=7\Rightarrow x^2+2x\frac{1}{x}+\frac{1}{x^2}=7+2=9\Leftrightarrow\left(x+\frac{1}{x}\right)^2=9\Leftrightarrow x+\frac{1}{x}=3\)\(\Rightarrow x^3+\frac{1}{x^3}=\left(x+\frac{1}{x}\right)^3-3x\frac{1}{x}\left(x+\frac{1}{x}\right)=27-9=18\)

Ta có:  \(x^5+\frac{1}{x^5}=\left(x^2+\frac{1}{x^2}\right)\left(x^3+\frac{1}{x^3}\right)-\left(x+\frac{1}{x}\right)=7\times18-3=123\)

1 tháng 3 2020

áp dụng tính chất của dãy tỉ số bằng nhau ta có:\(\frac{ }{ }\)

y+z-x/x=z+x-y/y=x+y-z/z

=y+z-x+z+x-y+x+y-z/x+y+z

=(y-y)+(z-z)-(x-x)+z+x+y/x+y+z

=0+0+0+x+y+z/x+y+z=1

\(\Leftrightarrow\)x=y=z (*)

thay (*) vào B ta có:

B=(1+x/x)(1+x/x)(1+x/x)

  =2.2.2=8

21 tháng 8 2020

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(...=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)( vì x + y + z \(\ne\)0 )

\(\Rightarrow\hept{\begin{cases}\frac{y+z-x}{x}=1\\\frac{z+x-y}{y}=1\\\frac{x+y-z}{z}=1\end{cases}}\Rightarrow\hept{\begin{cases}y+z-x=x\\z+x-y=y\\x+y-z=z\end{cases}}\Rightarrow\hept{\begin{cases}y+z=2x\\z+x=2y\\x+y=2z\end{cases}}\Rightarrow x=y=z\)

Thế x = y = z vào B ta được :

\(B=\left(1+\frac{y}{y}\right)\left(1+\frac{x}{x}\right)\left(1+\frac{z}{z}\right)=\left(1+1\right)\left(1+1\right)\left(1+1\right)=2\cdot2\cdot2=8\)

26 tháng 10 2016

\(\frac{11}{14}+\left|\frac{2}{7}-x\right|-\frac{5}{2}=\frac{4}{3}\)

\(\Leftrightarrow\frac{11}{14}+\left|\frac{2}{7}-x\right|=\frac{23}{6}\)

\(\Leftrightarrow\left|\frac{2}{7}-x\right|=\frac{64}{21}\)

\(\Leftrightarrow\frac{2}{7}-x=\pm\frac{64}{21}\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\frac{2}{7}-x=\frac{64}{21}\\\frac{2}{7}-x=-\frac{64}{21}\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{58}{21}\\x=\frac{10}{3}\end{array}\right.\)

\(x>0\)

Vậy \(x=\frac{10}{3}\)

 

26 tháng 10 2016

Thanks!

7 tháng 8 2016

Từ $\frac{x}{y}=\frac{2}{3}\implies \frac{x}{2}=\frac{y}{3}\implies \frac{x}{6}=\frac{y}{9}(1)$(chia mỗi vế cho 3).

Từ $\frac{x}{3}=\frac{z}{5}\implies \frac{x}{6}=\frac{z}{10}(2)$(chia mỗi vế cho 2).

Từ (1) và (2) suy ra: $\frac{x}{6}=\frac{y}{9}=\frac{z}{10}(=a)$.

$\implies x=6a;y=9a;z=10a$

$\implies x^2+y^2+z^2=36a^2+81a^2+100a^2=\frac{217}{4}\implies a^2=\frac{1}{2}\implies a=\frac{1}{2}\text{ hoặc } a=\frac{-1}{2}$.

Thế vào ta được: $(x;y;z)=(3;\frac{9}{2};5)$ hoặc $(x;y;z)=(-3;-\frac{-9}{2};-5)$

7 tháng 8 2016

\(\frac{x}{y}=\frac{2}{3}\Rightarrow\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{6}=\frac{y}{9}\left(1\right)\)

\(\frac{x}{3}=\frac{z}{5}\Rightarrow\frac{x}{6}=\frac{z}{10}\left(2\right)\)

Từ (1) và (2)

\(\Rightarrow\frac{x}{6}=\frac{y}{9}=\frac{z}{10}\)

\(\Rightarrow\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}\)

Áp dụng tc của dãy tỉ số bằng nhau Ta có

\(\frac{x^2}{36}=\frac{y^2}{81}=\frac{z^2}{100}=\frac{x^2+y^2+z^2}{36+81+100}=\frac{\frac{217}{4}}{217}=\frac{1}{4}\)

\(\Rightarrow\begin{cases}x=\pm3\\y=\pm\frac{9}{2}\\z=\pm5\end{cases}\)

Mà 6;9;10 cùng dấu

=> x;y;z cùng dấu

\(\Rightarrow\left(x;y;z\right)\in\left\{\left(3;\frac{9}{2};5\right);\left(-3;-\frac{9}{2};-5\right)\right\}\)