Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\\\frac{y}{5}=\frac{z}{6}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{20}\\\frac{y}{20}=\frac{z}{24}\end{cases}}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=24k\end{cases}}\)
Khi đó : \(M=\frac{2x+3y+4z}{3x+4y+5z}=\frac{30k+60k+96k}{45k+80k+120k}=\frac{186k}{245k}=\frac{186}{245}\)
Ta có:
\(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{6}\Leftrightarrow\frac{y}{20}=\frac{z}{24}\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
Đặt:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=N\)
\(\Leftrightarrow x=15N;y=20N;z=24N\) (*)
\(\Leftrightarrow M=\frac{2x+3y+4z}{3x+4y+5z}\) (**)
Từ (*) và (**) ta có:
\(M=\frac{2.15N+3.20N+4.24N}{3.15N+4.20N+5.24N}\)
\(\Leftrightarrow M=\frac{30N+60N+96N}{45N+80N+120N}\)
\(\Leftrightarrow M=\frac{186N}{245N}=\frac{186}{245}\)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
Theo đầu bài, ta có
x/3=x/4 và y/5=z/6
<=> x/15=y/20=z/24
<=>2x/30=3y/60=4z/96=2x+3y+4z/30+60+96=2x+3y+4z/186 ( Theo tính chất của dãy tỉ số bằng nhau ) (1)
mà 3x/45=4y/80=5z/120=3x+4y+5z/45+80+120=3x+4y+5z/245 ( Theo tính chất của dãy tỉ số bằng nhau ) (2)
Từ (1) và (2) ta có:
2x+3y+4z/186=3x+4y+5z/245=2x+3y+4z/3x+4y+5z=186/245
Xong :)))
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)