K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 9 2020

x/2 = 2y/6 =3z/15

Ap dung day ti so bang nhau : x/2 = 2y/6 =3z/15 = 22/ ( 2-6+15) = 2 ⇒x=2*2=4

y=3*2=6

z=5*2=10

28 tháng 9 2020

biết ???

10 tháng 8 2021

x2=y3=z5=x2y+3z22.3+3.5=3811x2=y3=z5=x−2y+3z2−2.3+3.5=3811


⎪ ⎪
x=3811.2=7611y=3811.3=11411z=3811.5=19011

10 tháng 8 2021

Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{y}{5}\)\(\Rightarrow\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{2}=\dfrac{2y}{6}=\dfrac{3z}{15}=\dfrac{x-2y+3z}{2-6+15}=\dfrac{38}{11}\)

\(\dfrac{x}{2}=\dfrac{38}{11}\Rightarrow x=\dfrac{76}{11}\)

\(\dfrac{y}{3}=\dfrac{38}{11}\Rightarrow y=\dfrac{114}{11}\)

\(\dfrac{z}{5}=\dfrac{38}{11}\Rightarrow z=\dfrac{190}{11}\)

14 tháng 7 2019

\(\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[\left(-3,2\right)+\frac{2}{5}\right]\)

\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=\left[-\frac{3}{2}+\frac{2}{5}\right]\)

\(\Rightarrow\left|x-\frac{1}{3}\right|+\frac{4}{5}=-\frac{11}{10}\)

\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{11}{10}-\frac{4}{5}\)

\(\Rightarrow\left|x-\frac{1}{3}\right|=-\frac{19}{10}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{1}{3}=\frac{19}{10}\\x-\frac{1}{3}=-\frac{19}{10}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{67}{30}\\x=-\frac{47}{30}\end{cases}}\)

14 tháng 7 2019

Bạn ơi còn b,c nữa 

15 tháng 11 2015

bài 2 :

ta có x:y:z=3:5:(-2)

=>x/3=y/5=z/-2

=>5x/15=y/5=3z/-6

áp dụng tc dãy ... ta có :

5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4

=>x/3=-=>x=-12

=>y/5=-4=>y=-20

=>z/-2=-4=>z=8

17 tháng 10 2020

1.

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=5k\end{cases}}\)

Ta có\(x-2y+3z=22\)

\(\Leftrightarrow2k-6k+15k=22\)

\(\Leftrightarrow11k=22\Leftrightarrow k=2\)

Do đó  \(\hept{\begin{cases}\frac{x}{2}=2\Leftrightarrow x=4\\\frac{y}{3}=2\Leftrightarrow y=6\\\frac{z}{5}=2\Leftrightarrow z=10\end{cases}}\)

2.

Theo tính chất dãy tỉ số bằng nhau\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{150}{-12}=-\frac{25}{2}\)

Ta có

 \(\frac{x}{2}=-\frac{25}{2}\Leftrightarrow x=2.\left(-25\right):2=-25\)

\(\frac{y}{3}=-\frac{25}{2}\Leftrightarrow y=3.\left(-25\right):2=-\frac{75}{2}\)

\(\frac{z}{5}=-\frac{25}{2}\Leftrightarrow z=5.\left(-25\right):2=-\frac{125}{2}\)

Thử lại ko đúng cách đặt thì \(k^2=-\frac{25}{2}\left(ktm\right)\) mình nghĩ đề sai

25 tháng 6 2015

hinh nhu vao google tim cug dc ban co the kham khao rat nhieu bai

25 tháng 6 2015

x : y : z = 3 : 4 : 5

=>x/3=y/4=z/5 => x2/9=y2/16=z2/5 = 2x2=2x2/18=2y2/32=3z2/75

áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2+2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)

suy ra 2x2/18=4 =>x2=36 =>x=6 ; x=-6

2y2/32=4 =>x2=128 => y=8 ; y=-8

3x2/75=4 =>z2=100 =>z=10 ;z=-10

16 tháng 10 2021

\(a,\dfrac{12}{5}=\dfrac{x}{1,5}\Rightarrow x=\dfrac{12\cdot1,5}{5}=3,6\\ b,\dfrac{x}{5}=\dfrac{3}{20}\Rightarrow x=\dfrac{5\cdot3}{20}=\dfrac{3}{4}\\ c,\dfrac{4}{x}=\dfrac{10}{9}\Rightarrow x=\dfrac{4\cdot9}{10}=\dfrac{18}{5}\\ d,\Rightarrow\dfrac{x}{15}=\dfrac{60}{x}\Rightarrow x^2=60\cdot15=900\Rightarrow\left[{}\begin{matrix}x=30\\x=-30\end{matrix}\right.\\ 2,\)

a, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x+y-z}{3+5-6}=\dfrac{8}{2}=4\\ \Rightarrow\left\{{}\begin{matrix}x=12\\y=20\\z=24\end{matrix}\right.\)

b, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{x-y+z}{3-5+6}=\dfrac{-4}{4}=-1\\ \Rightarrow\left\{{}\begin{matrix}x=-3\\y=-5\\z=-6\end{matrix}\right.\)

c, Áp dụng t/c dtsbn:

\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=\dfrac{2y}{10}=\dfrac{3z}{18}=\dfrac{x-2y+3z}{3-10+18}=\dfrac{-33}{11}=-3\\ \Rightarrow\left\{{}\begin{matrix}x=-9\\y=-15\\z=-18\end{matrix}\right.\)

d, Đặt \(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{6}=k\Rightarrow x=3k;y=5k;z=6k\)

\(x^2-4y^2+2z^2=-475\\ \Rightarrow9k^2-100k^2+72z^2=-475\\ \Rightarrow-19k^2=-475\\ \Rightarrow k^2=25\Rightarrow\left[{}\begin{matrix}k=5\\k=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=15;y=25;z=30\\x=-15;y=-25;z=-30\end{matrix}\right.\)