Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x+2y=1
=> x=1-2y
Thay x=1-2y vào biểu thức A
Ta có: A=(1-2y)2+2y2
A=(2x-1)2 >= 0, dấu = xảy ra <=> x=1/2
Vậy min A = 0 <=> x=1/2 và y=1/4
\(P=\left(2x+\frac{1}{x}\right)^2+\left(2y+\frac{1}{y}\right)^2\)
Ta có: \(2x+\frac{1}{x}\ge2\sqrt{2x+\frac{1}{x}}=2\sqrt{2}\)
\(\Rightarrow\left(2x+\frac{1}{x}\right)^2\ge8\)
\(\Rightarrow\left(2y+\frac{1}{y}\right)^2\ge8\)
Dấu \("="\) xảy ra \(\Leftrightarrow x=y=\pm\frac{1}{2}\)
Vậy \(P_{min}=16\Leftrightarrow x=y=\pm\frac{1}{2}\)
A= (x2 +2x +1) +(y2+2y+1) +(z2+2z+1) -3
=(x+1)2 +(y+1)2 +(z+1)2 -3 >/ -3
A min = -3 khi x =y=z = -1
1: \(=x^2+x+5=x^2+x+\dfrac{1}{4}+\dfrac{19}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{19}{4}>=\dfrac{19}{4}\)
Dấu '=' xảy ra khi x=-1/2
2: \(=-\left(x^2+4x-9\right)\)
\(=-\left(x^2+4x+4-13\right)\)
\(=-\left(x+2\right)^2+13\le13\)
Dấu '=' xảy ra khi x=-2
3: \(=x^2-4x+4+y^2+2y+1+2\)
\(=\left(x-2\right)^2+\left(y+1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=2 và y=-1
1.ta có: 7x-2x^2=-2(x^2-7/2x)
=-2(x^2-2*7/4x+49/16-49/16)
=-2(x-7/4)^2+49/8 <=49/8
Dấu bằng xáy ra <=> x=7/4
Vậy max=49/8 <=> x=7/4