K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2017

Bất đẳng thức là cái j vậy các anh chụy?

24 tháng 7 2016

\(x+y+\frac{1}{2x}+\frac{2}{y}=\frac{x+y}{2}+\frac{x}{2}+\frac{y}{2}+\frac{1}{2x}+\frac{2}{y}=\left(\frac{x}{2}+\frac{1}{2x}\right)+\left(\frac{y}{2}+\frac{2}{y}\right)+\frac{1}{2}\left(x+y\right)\)

Vì x\(\ge0\)  => \(\frac{x}{2}\ge0;\frac{1}{2x}\ge0\). Áp dụng bđt cô si cho 2 số dương ta có:

             \(\frac{x}{2}+\frac{1}{2x}\ge2\sqrt{\frac{x}{2}\cdot\frac{1}{2x}}=2\sqrt{\frac{1}{4}}=2\cdot\frac{1}{2}=1\)

Chứng minh tt ta có:

             \(\frac{y}{2}+\frac{2}{y}\ge2\)

=> \(x+y+\frac{1}{2x}+\frac{2}{y}\ge1+2+\frac{1}{2}\cdot3=\frac{9}{2}\)

12 tháng 5 2016

khi x=y

12 tháng 5 2016

khi x=y

18 tháng 7 2016

khỏi cần

ta có \(A^2=2+2\sqrt{x\left(2-x\right)}\ge2\)

dấu = xảy ra khi x=4

18 tháng 7 2016

nhanh hơn nhìu nha

22 tháng 4 2016

ai làm có thưởng 2điem

2 tháng 8 2017

b)

Đề: Cho a, b, c > 0 và abc = ab + bc + ca. Chứng minh rằng: \(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\le\frac{3}{16}\)

~ ~ ~ ~ ~

\(abc=ab+bc+ca\)

\(\Leftrightarrow1=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Áp dụng BĐT \(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\), ta có:

\(\frac{1}{a+2b+3c}+\frac{1}{2a+3b+c}+\frac{1}{3a+b+2c}\)

\(\le\frac{1}{4}\left(\frac{1}{a+c}+\frac{1}{2\left(b+c\right)}+\frac{1}{2\left(a+b\right)}+\frac{1}{b+c}+\frac{1}{2\left(a+c\right)}+\frac{1}{a+b}\right)\)

\(=\frac{1}{4}\left[\frac{3}{2\left(a+c\right)}+\frac{3}{2\left(b+c\right)}+\frac{3}{2\left(a+b\right)}\right]\)

\(=\frac{3}{8}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{a+b}\right)\)

\(\le\frac{3}{32}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

\(=\frac{3}{16}\) (đpcm)

Dấu "=" xảy ra khi a = b = c 

dấu bằng xảy ra khi :

\(x+\dfrac{16}{x-2}=10\\ \Rightarrow x\left(x-2\right)+16=10x-20\\ x^2-2x+16=10x-20\\ x^2-12x+36=0\\ \left(x-6\right)^2=0\\ \Rightarrow x=6\)