K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2021

Đặt \(a=\dfrac{1}{x};b=\dfrac{1}{y}\). khi đó gt trở thành:

\(a+b=a^2+b^2-ab\ge\dfrac{1}{4}\left(a+b\right)^2\Leftrightarrow o\le a+b\le4\);

\(A=a^3+b^3=\left(a+b\right)\left(a^2+b^2-ab\right)=\left(a+b\right)^2\le16\)

Đẳng thức xảy ra khi và chỉ khi a=b=2 <=> x=y=1/2

Vậy Max A = 16

AH
Akai Haruma
Giáo viên
20 tháng 7 2017

Bài 1:

Đặt \(\left\{\begin{matrix} x+y=a\\ xy=b\end{matrix}\right.\Rightarrow x^2+y^2+xy=a^2-b=3\)

\(x,y\geq 0\rightarrow b\geq 0\rightarrow a^2=3+b\geq 3\)

Biến đổi:

\(T=(x+y)^3-3xy(x+y)-[(x+y)^2-2xy]\)

\(\Leftrightarrow T=a^3-3ab-a^2+2b\)

\(\Leftrightarrow T=a^3-3a(a^2-3)-a^2+2(a^2-3)=-2a^3+a^2+9a-6\)

Xét đạo hàm và lập bảng biến thiên hàm trên với điều kiện \(a\geq \sqrt{3}\) ta thu được \(T_{\max}=3\sqrt{3}-3\Leftrightarrow a=\sqrt{3}\Leftrightarrow (x,y)=(\sqrt{3},0)\)

Hàm không có min.

các bạn giải giúp mình mấy câu bất đẳng thức này với 1) tìm GTLN a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\) b)y=\(\dfrac{x}{x^2+2}\) x>0 2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\) 3)cho x,y>0 thỏa mãn x+y=2 . CM a)xy(x2+y2)\(\le2\) b)x3y3(x3+y3)\(\le2\) 4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\) tìm GTLN A= (3-x)(4-y)(2x+3y) 5)...
Đọc tiếp

các bạn giải giúp mình mấy câu bất đẳng thức này với

1) tìm GTLN

a) y=(6x+3)(5-2x) \(\dfrac{-1}{2}\le x\le\dfrac{5}{2}\)

b)y=\(\dfrac{x}{x^2+2}\) x>0

2)cho 3 số thực a,b,c thỏa mãn \(a\ge9,b\ge4,c\ge1\). CM :\(ab\sqrt{c-1}+bc\sqrt{a-9}+ca\sqrt{b-4}\le\dfrac{11abc}{12}\)

3)cho x,y>0 thỏa mãn x+y=2 . CM

a)xy(x2+y2)\(\le2\)

b)x3y3(x3+y3)\(\le2\)

4) x,y là các số thực thỏa mãn \(0\le x\le3,0\le y\le4\)

tìm GTLN A= (3-x)(4-y)(2x+3y)

5) biết x,y,z,u\(\ge0\)và 2x+xy+z+yzu=1

tìm GTLN của P=x2y2z2u

6)cho a,b,c>0 và a+b+c=3 .CMR:\(a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\le5\)

7) cho 3 số dương x,y,z có tổng bằng 1 .CMR : \(\sqrt{\dfrac{xy}{xy+z}}+\sqrt{\dfrac{yz}{yz+x}}+\sqrt{\dfrac{xz}{xz+y}}\le\dfrac{3}{2}\)

8)cho 3 số dương a,b,c có tổng bằng 3 .

tìm GTLN của S=\(\dfrac{bc}{\sqrt{3a+bc}}+\dfrac{ca}{\sqrt{3b+ca}}+\dfrac{ab}{\sqrt{3c+ab}}\)

ko cần làm chi tiết lắm chỉ cần hướng dẫn là đc zùi

3
17 tháng 2 2019

\(8,\dfrac{bc}{\sqrt{3a+bc}}=\dfrac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\dfrac{bc}{\sqrt{a^2+ab+ac+bc}}\)

\(=\dfrac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\dfrac{\dfrac{b}{a+b}+\dfrac{c}{a+c}}{2}\)

Tương tự cho các số còn lại rồi cộng vào sẽ được

\(S\le\dfrac{3}{2}\)

Dấu "=" khi a=b=c=1

Vậy

17 tháng 2 2019

\(7,\sqrt{\dfrac{xy}{xy+z}}=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}=\sqrt{\dfrac{xy}{xy+xz+yz+z^2}}\)

\(=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}\le\dfrac{\dfrac{x}{x+z}+\dfrac{y}{y+z}}{2}\)

Cmtt rồi cộng vào ta đc đpcm

Dấu "=" khi x = y = z = 1/3

Phiếu ôn số 01 - 2019- Sự nghịch biến đồng biến Câu 1 : Hàm số y = 2x3-3x2+1 nghịch biến trên : A . (0;+∞) B. (0;1) C. (-∞;1) D. (-∞;0) ; (1;+∞) Câu 2: Hàm số y = x4-2x3+2x+1 đòng biến trên : A. (-\(\dfrac{1}{2}\);+∞) B. (-∞;\(\dfrac{-1}{2}\)) C. (0;+∞) D. (-1;\(\dfrac{-1}{2}\)) Câu 3: Hàm số y =...
Đọc tiếp

Phiếu ôn số 01 - 2019- Sự nghịch biến đồng biến

Câu 1 : Hàm số y = 2x3-3x2+1 nghịch biến trên :

A . (0;+∞) B. (0;1) C. (-∞;1) D. (-∞;0) ; (1;+∞)

Câu 2: Hàm số y = x4-2x3+2x+1 đòng biến trên :

A. (-\(\dfrac{1}{2}\);+∞) B. (-∞;\(\dfrac{-1}{2}\)) C. (0;+∞) D. (-1;\(\dfrac{-1}{2}\))

Câu 3: Hàm số y = \(\dfrac{x+1}{x-1}\) luôn nghịch biến trên :

A. R B. R\{1} C. (0;+∞) D. (-∞;1);(1;+∞)

Câu 4. Hàm số nào sau đâu nghịch biến trên (1;3) :

A. y = x2-4x+8 B.y =\(\dfrac{x^2+x-1}{x-1}\) C.y =\(\dfrac{2}{3}x^3-4x^2+6x-1\) D. y =\(\dfrac{2x-4}{x-1}\)

Câu 5. Hàm số nào sau đây luôn đồng biến trên R :

A. y = x3+2016 B. y = tanx C. y= x4+x2+1 D. y =\(\dfrac{2x+1}{x+3}\)

Câu 6. Trong các hàm số sau hàm số nào đồng biến trên miền xác định của nó :

A. y = \(\sqrt[3]{x+1}\) B.y = \(\dfrac{\sqrt{x^2+1}}{x^2}\) C. y = \(\dfrac{2x+1}{x+1}\) D. y = sinx

Câu 7. Hà, số y=|x-1|(x2-2x-2) có bao nhiêu khoảng đồng biến :

A.1 B.2 C.3 D.4

Câu 8. Hàm số y = \(\sqrt{2x-x^2}\) nghịch biến trên khoảng nào ?

A. (1;2) B. (1;+∞) C. ( 0;1) D. (0;2)

Câu 9 . Trong các hàm số sau , hàm số nào nghịch biến trên khoảng (0;2) :

A. y = \(\dfrac{x+3}{x-1}\) B. y = x4+2x2+3 C. y= x3-x2+3x-5 D. y= x3-3x2-5

1
7 tháng 8 2018

câu 1 B

câu 2 B

câu 3 D

câu 4 C

câu 5 C

câu 8 A

câu 9 D

15 tháng 6 2018

Ta có: \(x^2+2xy+7(x+y)+2y^2+10=0\)
<=> \((x^2+2xy+y^2)+7(x+y)+y^2+10=0\)
<=>(1)
Đặt t=x+y
=>(1)<=>\(y^2+t^2+7t+10=0 \)
Phương trình có nghiệm khi \(\Delta\)'\(\ge\)0
<=>\(t^2+7t+10=0 \) \(\le\)0
<=> -5\(\le\)t\(\le\)-2
=>Max S=1 khi t=-2<=>y=0;x=-2
Min S=-2 khi t=-5<=>y=0;x=-5

21 tháng 5 2020

Tam giác là gì vậy?

 

AH
Akai Haruma
Giáo viên
23 tháng 3 2017

Lời giải:

Vì mặt cầu tiếp xúc với đường thẳng nên độ dài bán kính chính bằng khoảng cách từ tâm đến đường thẳng đó

Ta thấy đường thẳng $(d)$ đi qua \(M(-1,2,-3)\) và có vector chỉ phương là \(\overrightarrow{u}=(2,1,-1)\)

\(\Rightarrow d(A,d)=\frac{|[\overrightarrow{u},\overrightarrow{MA}]|}{|\overrightarrow{u}|}=\frac{10\sqrt{3}}{\sqrt{6}}=5\sqrt{2}=R\rightarrow R^2=50\)

Do đó PTMC là: \((x-1)^2+(y+2)^2+(z-3)^2=50\)

Đáp án C

23 tháng 3 2017

cảm ơn bạn nhiều!!!

Chọn B

NV
18 tháng 5 2019

\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Rightarrow2^{x+\frac{1}{x}}\ge2^2=4\Rightarrow VT\ge4\)

Xét biểu thức dưới hàm logarit vế phải:

\(14-\left(y-2\right)\sqrt{y+1}=14-\left(y+1\right)\sqrt{y+1}+3\sqrt{y+1}\)

Đặt \(t=\sqrt{y+1}\ge0\) thì \(f\left(t\right)=14-t^3+3t\)

\(f'\left(t\right)=-3t^2+3=0\Rightarrow t=1\)

Dễ dạng nhận ra đây là điểm cực đại của hàm \(f\left(t\right)\)

\(\Rightarrow f\left(t\right)_{max}=f\left(1\right)=16\)

\(\Rightarrow VP\le log_216=4\le VT\)

Đẳng thức xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x=\frac{1}{x}\\t=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\\sqrt{y+1}=1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)

\(\Rightarrow P=1+0+0+1=2\)

- Nếu đề là \(2^{x+\frac{1}{2}}\) thì \(VT>\sqrt{2}\) hoàn toàn ko thể đánh giá được P, vì miền giá trị của VT và VP trùng nhau 1 đoạn (x;y) rất dài cho nên sẽ có vô số giá trị P xảy ra nên mình khẳng định luôn là đề sai

NV
18 tháng 5 2019

Đề bài là \(2^{x+\frac{1}{2}}\) hả bạn? Với đề này thì ko giải được