K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 3 2021

\(VT=\dfrac{x^2}{x^2+2xy+3zx}+\dfrac{y^2}{y^2+2yz+3xy}+\dfrac{z^2}{z^2+2zx+3yz}\)

\(VT\ge\dfrac{\left(x+y+z\right)^2}{x^2+y^2+z^2+5xy+5yz+5zx}=\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+3\left(xy+yz+zx\right)}\ge\dfrac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(x+y+z\right)^2}=\dfrac{1}{2}\)

23 tháng 4 2017

Haha không giỡn nữa :v :focus:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(L.H.S=Σ\dfrac{1}{2x+y+z}=7Σ\dfrac{1}{2\left(x+3y\right)+\left(y+3z\right)+4\left(z+3x\right)}\)

\(=\dfrac{1}{7}Σ\dfrac{\left(2+1+4\right)^2}{2\left(x+3y\right)+\left(y+3z\right)+4\left(z+3x\right)}\)

\(\le\dfrac{1}{7}Σ\left(\dfrac{2^2}{2\left(x+3y\right)}+\dfrac{1^2}{y+3z}+\dfrac{4^2}{4\left(z+3x\right)}\right)\)

\(=\dfrac{1}{7}Σ\left(\dfrac{2}{x+3y}+\dfrac{1}{y+3z}+\dfrac{4}{z+3x}\right)\)

\(=\dfrac{1}{7}Σ\dfrac{7}{x+3y}=Σ\dfrac{1}{x+3y}=R.H.S\)

23 tháng 4 2017

Áp dụng bất đẳng thức \(\dfrac{1}{x}+\dfrac{1}{y}\le\dfrac{4}{x+y}\) \(\forall x,y>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x+3y}+\dfrac{1}{y+2z+x}\le\dfrac{4}{2x+4y+2z}=\dfrac{2}{x+2y+z}\\\dfrac{1}{y+3z}+\dfrac{1}{z+2x+y}\le\dfrac{4}{2x+2y+4z}=\dfrac{2}{x+y+2z}\\\dfrac{1}{z+3x}+\dfrac{1}{x+2y+z}\le\dfrac{4}{4x+2y+2z}=\dfrac{2}{2x+y+z}\end{matrix}\right.\)

\(\Rightarrow\dfrac{1}{x+3y}+\dfrac{1}{y+3z}+\dfrac{1}{z+3x}+\dfrac{1}{y+2z+x}+\dfrac{1}{z+2x+y}+\dfrac{1}{x+2y+z}\le\dfrac{2}{x+2y+z}+\dfrac{2}{x+y+2z}+\dfrac{2}{2x+y+z}\)

\(\Rightarrow VT\le\left(\dfrac{2}{x+2y+z}-\dfrac{1}{x+2y+z}\right)+\left(\dfrac{2}{x+y+2z}-\dfrac{1}{y+x+2z}\right)+\left(\dfrac{2}{2x+y+z}-\dfrac{1}{z+2x+y}\right)\)

\(\Rightarrow VT\le\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}+\dfrac{1}{2x+y+z}\)

\(\Leftrightarrow\dfrac{1}{x+3y}+\dfrac{1}{y+3z}+\dfrac{1}{z+3x}\le\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}+\dfrac{1}{2x+y+z}\) ( đpcm )

28 tháng 4 2017

Ta đặt: \(\left\{{}\begin{matrix}\dfrac{1}{x^2}=a\\\dfrac{1}{y^2}=b\\\dfrac{1}{z^2}=c\end{matrix}\right.\)\(\Rightarrow\sqrt{abc}=abc=1\)

Ta có: \(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\dfrac{1}{\sqrt{a}}+1}+\dfrac{1}{\dfrac{1}{\sqrt{ab}}+\sqrt{ca}+1}\)

\(=\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{\sqrt{a}}{\sqrt{ba}+1+\sqrt{a}}+\dfrac{1}{1+\sqrt{ab}+\sqrt{a}}=1\)

Quay lại bài toán, sau khi đặt bài toán trở thành:

\(P=\dfrac{1}{2b+a+3}+\dfrac{1}{2c+b+3}+\dfrac{1}{2a+c+3}\)

\(=\dfrac{1}{\left(a+b\right)+\left(b+1\right)+2}+\dfrac{1}{\left(b+c\right)+\left(c+1\right)+2}+\dfrac{1}{\left(c+a\right)+\left(a+1\right)+2}\)

\(\le\dfrac{1}{2}\left(\dfrac{1}{\sqrt{a}+\sqrt{ab}+1}+\dfrac{1}{\sqrt{b}+\sqrt{bc}+1}+\dfrac{1}{\sqrt{c}+\sqrt{ca}+1}\right)=\dfrac{1}{2}\)

28 tháng 4 2017

Cái đó t cố tình bỏ đấy. B phải tự làm chứ chẳng lẽ t làm hết??

4 tháng 10 2017

Áp dụng bđt Cauchy Schwarz dạng Engel:

P=\(\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{3^2}{4.3}=\frac{3}{4}\)

Dấu "=" xảy ra khi x=y=z=1

4 tháng 10 2017

Áp dụng BĐT Svac ta có:
\(P=\dfrac{x^2}{y+3z}+\dfrac{y^2}{z+3x}+\dfrac{z^2}{x+3y}\ge\dfrac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\dfrac{x+y+z}{4}=\dfrac{3}{4}\)

Dấu '=' xảy ra khi \(x=y=z=1\)

Vậy \(P_{min}=\dfrac{3}{4}\) khi \(x=y=z=1\)

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Lời giải:Áp dụng BĐT Cauchy-Schwarz ta có:

$\frac{1}{2x+y+z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$

$\frac{1}{x+2y+z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}\right)$

$\frac{1}{x+y+2z}\leq \frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}\right)$

Cộng theo vế và rút gọn thì:

$\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\leq \frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)$

 

AH
Akai Haruma
Giáo viên
7 tháng 3 2021

Dấu "=" xảy ra khi $x=y=z>0$ nhé!

NV
29 tháng 6 2020

\(B=\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\ge\frac{9}{2x+y+z+x+2y+z+x+y+2z}=\frac{9}{4\left(x+y+z\right)}\ge\frac{9}{4}.1=\frac{9}{4}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\)

4 tháng 5 2017

Ta có: \(\dfrac{16}{2x+y+z}\le\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

\(\Leftrightarrow\dfrac{1}{2x+y+z}\le\dfrac{1}{16}\left(\dfrac{2}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\left(1\right)\)

Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{1}{x+2y+z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{1}{z}\right)\left(2\right)\\\dfrac{1}{x+y+2z}\le\dfrac{1}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{2}{z}\right)\left(3\right)\end{matrix}\right.\)

Cộng (1), (2), (3) vế theo vế ta được:

\(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\le\dfrac{4}{16}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{4.4}{16}=1\)

Dấu = xảy ra khi \(x=y=z=\dfrac{3}{4}\)