K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 3 2020

\(x^2+y^2+z^2+t^2\ge x\left(y+z+t\right)\)

\(\Leftrightarrow x^2+y^2+z^2+t^2\ge xy+xz+xt\)

\(\Leftrightarrow4x^2+4y^2+4z^2+4t^2\ge4xy+4xz+4xt\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+a^2\ge0\)

(BĐT luôn đúng) => ĐPCM

Nguồn: vothutrang271

5 tháng 10 2017

\(x^2+y^2+z^2+t^2\ge x\left(y+z+t\right)\)

\(\Leftrightarrow x^2+y^2+z^2+t^2\ge xy+xz+xt\)

\(\Leftrightarrow4x^2+4y^2+4z^2+4t^2\ge4xy+4xz+4xt\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+a^2\ge0\)

(BĐT đúng)

Vậy ta có đpcm

27 tháng 2 2018

x^3+y^3 = 2.(z^3+t^3)

<=> x^3+y^3+z^3+t^3 = 3.(z^2+t^3) chia hết cho 3

Xét : x^3-x = x.(x^2-1) = (x-1).x.(x+1) chia hết cho 3 ( vì là tích 3 số nguyên liên tiếp )

Tương tự : y^3-y , z^3-z  và t^3-t đều chia hết cho 3

=> (x^3+y^3+z^3+t^3)-(x+y+z+t) chia hết cho 3

Mà x^3+y^3+z^3+t^3 chia hết cho 3

=> x+y+z+t chia hết cho 3

Tk mk nha

28 tháng 2 2018

cảm ơn bạn nhé

5 tháng 6 2019

x3 + y3 = 2 ( z3 + t3 )

\(\Rightarrow\)x3 + y3 + z3 + t3 = 3 ( z3 + t3 )   \(⋮\)

Áp dụng bài toán : n \(\in\)Z thì n3 - n \(⋮\)3

Ta có : ( x3 - x ) + ( y3 - y ) + ( z3 - z ) + ( t3 - t ) \(⋮\)

hay ( x3 + y3 + z3 + t3 ) - ( x + y + z + t ) \(⋮\)3

Mà x3 + y3 + z3 + t3 \(⋮\)3 nên x + y + z + t \(⋮\)3

5 tháng 6 2019

thank you

16 tháng 9 2018

Bài này bạn phải chuyển 2xyz sang vế kia rồi nhóm hợp lí mới ra được

(x2y+z2y-2xyz)-(y2x-y2z)+(x2z-z2x)=0

y(x2+z2-2xz)-y2(x-z)+xz(x-z)=0

y(x-z)(x-z)-y2(x-z)+xz(x-z)=0

(x-z)(xy-yz-y2+xz)=0

(x-z)(x-y)(y+z)=0

Nên x-z=0 hoặc x-y=0 hoặc y+z=0

Do đó: x=z hoặc x=y hoặc y=-z

28 tháng 11 2017

cảm ơn ạ

22 tháng 11 2022

Bài 3:

\(\left\{{}\begin{matrix}x+y>=2\sqrt{xy}\\y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\end{matrix}\right.\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)>=8xyz\)

Dấu = xảy ra khi x=y=z

7 tháng 9 2019

Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath

16 tháng 9 2017

1. Rút gọn biểu thức:

(x - y + z)2 + (z - y)2 + 2(x - y + z)(y - z)

= (x - y + z)2 + 2(x - y + z)(y - z) + (y - z)2

= (x - y + z + y - z)2

= x2

2. Biết số tự nhiên a chia cho 5 dư 4. Chứng minh rằng a2 chia cho 5 dư 1

Giải

Đặt a = 5q + 4 (q \(\in\) N), ta có:

a2 = (5q + 4)2 = 25q2 + 40q + 16 = (25q2 + 40q + 15) + 1 chia cho 5 dư 1.