K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

Tương tự, thay số vào là được :)

Câu hỏi của Đặng Quốc Vinh - Toán lớp 8 | Học trực tuyến

3 tháng 12 2017

Bài này lâu rùi sao ko mất đi thế ???

Bó tay "H24 HOC24"

AH
Akai Haruma
Giáo viên
4 tháng 12 2017

Lời giải:

Để \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\in\mathbb{Q}\Rightarrow \exists a,b\in\mathbb{N}^*, (a,b)=1\) sao cho :

\(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}=\frac{a}{b}\Leftrightarrow bx+by\sqrt{2017}=ay+az\sqrt{2017}\)

\(\Leftrightarrow (bx-ay)=\sqrt{2017}(az-by)\)

Vì \(a,b,x,y\in\mathbb{N}^*; \sqrt{2017}\not\in\mathbb{Q}\rightarrow \) để đẳng thức trên xảy ra thì:

\(bx-ay=az-by=0\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{a}{b}=\frac{x}{y}\\ \frac{a}{b}=\frac{y}{z}\end{matrix}\right.\Rightarrow \frac{x}{y}=\frac{y}{z}\)

\(\Rightarrow y^2=xz\)

a) Gọi d là ước chung lớn nhất của x và z. Khi đó đặt:

\(\left\{\begin{matrix} x=x_1d\\ z=z_1d\end{matrix}\right.(x_1,z_1\in\mathbb{N}^*; (x_1,z_1)=1)\)

\(\Rightarrow x^2+y^2+z^2=x_1^2d^2+d^2x_1z_1+z_1^2d^2\)

\(=d^2(x_1^2+x_1z_1+z_1^2)\)

Vì \(x_1,z_1\in\mathbb{N}^*\Rightarrow x_1^2+x_1z_1+z_1^2>1\)

Do đó để \(x^2+y^2+z^2\in\mathbb{P}\Rightarrow d=1\)

Ta thấy \(y^2=xz; (x,z)=1\Rightarrow \exists m,n\in\mathbb{Z}\) sao cho:

\(\left\{\begin{matrix} x=m^2\\ z=n^2\end{matrix}\right.\Rightarrow y=mn\)

Khi đó: \(x^2+y^2+z^2=m^4+m^2n^2+n^4=(m^2+n^2)^2-m^2n^2\)

\(=(m^2+n^2-mn)(m^2+n^2+mn)\)

Để tích trên là số nguyên tố thì buộc một trong hai thừa số phải bằng 1

Dễ thấy \(m^2+n^2-mn< m^2+n^2+mn\Rightarrow m^2+n^2-mn=1\)

\(\Leftrightarrow (m-n)^2+mn=1\Leftrightarrow mn=1-(m-n)^2\leq 1\)

Mà \(mn=y\geq 1\)

Do đó \(mn=1\) hay \(y=1\)

Mặt khác \(mn=1; m,n\in\mathbb{Z}\Rightarrow (m,n)=(1,1); (-1;-1)\)

Cả hai đều thu được \(x=z=1\)

Vậy \((x,y,z)=(1,1,1)\)

b)

Vì \(xz=y^2\Rightarrow x^2-2y^2+z^2=36\)

\(\Leftrightarrow x^2-2xz+z^2=36\)

\(\Leftrightarrow (x-z)^2=36\Leftrightarrow x-z=\pm 6\)

TH1: \(x-z=6\Rightarrow x=z+6\)

Khi đó: \(y^2=xz=z(6+z)=z^2+6z\)

\(\Leftrightarrow y^2+9=(z+3)^2\)

\(\Leftrightarrow (z+3-y)(z+3+y)=9\)

Do \(z+3+y>0; z+3+y> z+3-y\) nên:\((z+3-y,z+3+y)=(1;9)\)

Từ đây ta thu được: \(z=2;y=4\rightarrow x=8\)

Ta có bộ \((x,y,z)=(8;4;2)\)

TH2: \(x-z=-6\). Tương tự như trên ta thu được \((x,y,z)=(2;4;8)\)

4 tháng 12 2017

ở bài 2 I là E hết nhé:

2, Cho tam giác ABC có 3 góc nhọn, \(D\in AB;E\in AC\) thỏa mãn: BC = BD + CE

Tìm vị trí của D và E để DE nhỏ nhất

3 tháng 3 2018

Theo đề bài để tồn tại phân số: \(\frac{1}{x+y+z}\) ta có: \(x+y+z\ne0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{1}{x+y+z}=2\Leftrightarrow x+y+z=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)

Thay vào đề bài ta có: \(\frac{\frac{1}{2}-x+1}{x}=\frac{\frac{1}{2}-y+2}{y}=\frac{\frac{1}{2}-z-3}{z}=2\)

Dễ dàng tìm được x;y;z rồi thay vào b thức

6 tháng 4 2018

?????? tớ không biết nhưng k cho mình nha

7 tháng 2 2019

Nhanh k cho nè

7 tháng 2 2019

làm lần lượt nhá,dài dòng quá khó coi.ahihihi!

\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)

\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)

24 tháng 1 2017

f)

\(A=\sqrt{\frac{\left(x+1\right)}{x-3}}=\sqrt{1+\frac{4}{x-3}}\)

x-3={-4)=> x=-1

Bạn vào câu hỏi tương tự có nha, hoặc vào link này: https://hoc24.vn/hoi-dap/question/198034.html

9 tháng 6 2017

\(\dfrac{x}{2015}=\dfrac{y}{2016}=\dfrac{z}{2017}=\dfrac{x-y}{-1}=\dfrac{y-z}{-1}=\dfrac{x-z}{-1}\Leftrightarrow x-z=x-y=y-z\Rightarrow x=y=z.\)