Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với \(m>0\)
\(2mx=\left(m-1\right)x+m\)
\(\Leftrightarrow2mx-\left(m-1\right)x=m\)
\(\Leftrightarrow\left(m+1\right)x=m\)
\(\Leftrightarrow x=\frac{m}{m+1}\)
Ta có: \(0< m< m+1\Rightarrow\frac{m}{m+1}< 1\)
\(\left\{{}\begin{matrix}m>0\\m+1>0\end{matrix}\right.\) \(\Rightarrow\frac{m}{m+1}>0\)
\(\Rightarrow0< \frac{m}{m+1}< 1\)
Do đó pt có nghiệm duy nhất thỏa mãn \(0< x< 1\)
Áp dụng bất đẳng thức Cauchy-Schwarz:
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}\ge\dfrac{9}{6}=\dfrac{3}{2}\)
\(P=\frac{1}{x^2+y^2+z^2}+\frac{2009}{xy+yz+zx}=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}+\frac{2007}{xy+yz+zx}\)
\(P\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{2007}{\frac{1}{3}\left(x+y+z\right)^2}\)
\(P\ge\frac{9}{\left(x+y+z\right)^2}+\frac{6021}{\left(x+y+z\right)^2}=\frac{6030}{\left(x+y+z\right)^2}\ge\frac{6030}{3^2}=670\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Áp dụng BĐT Côsi dưới dạng engel, ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
⇒\(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge\left(x+y+z\right).\frac{9}{x+y+z}\) = 9
Dấu "=" xảy ra ⇔ x = y = z
Câu 1:
2x2 + 2y2 = 5xy
<=> 2(x2 + y2) = 5xy
<=> x2 + y2 = \(\dfrac{5xy}{2}\)
P = \(\dfrac{x-y}{x+y}\)
=> P2 = \(\dfrac{\left(x-y\right)^2}{\left(x+y\right)^2}=\dfrac{x^2+y^2-2xy}{x^2+y^2+2xy}\left(1\right)\)
Thay x2 + y2 = \(\dfrac{5xy}{2}\) vào (1), ta có:
P2 = \(\dfrac{\dfrac{5xy}{2}-2xy}{\dfrac{5xy}{2}+2xy}=\dfrac{0,5xy}{4,5xy}=\dfrac{1}{9}\)
=> P = \(\sqrt{\dfrac{1}{9}}=\dfrac{1}{3}\left(0< x< y\right)\)
Câu 3: Câu hỏi của Hoàng Mai Anh - Toán lớp 8 | Học trực tuyến
\(m>n\Rightarrow m=n+p\left(p>0\right)\)
\(\Rightarrow x^m=x^n\cdot x^p\)mà \(x< 1\Rightarrow x^m=x^n\cdot x^p< x^n\cdot1^p=x^n\cdot1=x^n\Rightarrow x^m< x^n\)(đpcm)