K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2019

hướng dẫn thôi tự trình bày lại nhé

pt đầu bài \(\Leftrightarrow\)\(4x^2+9y^2+25+12xy+20x+30y=-3x^2+24x+36y+40\)

\(\Leftrightarrow\)\(\left(2x+3y+5\right)^2-12\left(2x+3y+5\right)+36=-3x^2+16\)

\(\Leftrightarrow\)\(\left(2x+3y-1\right)^2=-3x^2+16\le16\)

\(\Leftrightarrow\)\(-4\le2x+3y-1\le4\)\(\Leftrightarrow\)\(2\le2x+3y+5\le10\)

\(\Rightarrow\)\(\hept{\begin{cases}S_{min}=2\left(x=0;y=-1\right)\\S_{max}=10\left(x=0;y=\frac{5}{3}\right)\end{cases}}\)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

22 tháng 5 2017

8. \(x^2-5x+14-4\sqrt{x+1}=0\)       (ĐK: x > = -1).

\(\Leftrightarrow\)   \(\left(x+1\right)-4\sqrt{x+1}+4+\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow\)   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

Với mọi x thực ta luôn có:   \(\left(\sqrt{x+1}-2\right)^2\ge0\)   và   \(\left(x-3\right)^2\ge0\) 

Suy ra   \(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2\ge0\)

Đẳng thức xảy ra   \(\Leftrightarrow\)   \(\hept{\begin{cases}\left(\sqrt{x+1}-2\right)^2=0\\\left(x-3\right)^2=0\end{cases}}\)    \(\Leftrightarrow\)    x = 3 (Nhận)

22 tháng 5 2017

7.  \(S=9y^2-12\left(x+4\right)y+\left(5x^2+24x+2016\right)\)

\(=9y^2-12\left(x+4\right)y+4\left(x+4\right)^2+\left(x^2+8x+16\right)+1936\)

\(=\left[3y-2\left(x+4\right)\right]^2+\left(x-4\right)^2+1936\ge1936\)

Vậy   \(S_{min}=1936\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}3y-2\left(x+4\right)=0\\x-4=0\end{cases}}\)    \(\Leftrightarrow\)    \(\hept{\begin{cases}x=4\\y=\frac{16}{3}\end{cases}}\)

20 tháng 5 2017

Câu 8 bn tìm cách tách thành   

\(\left(\sqrt{x+1}-2\right)^2+\left(x-3\right)^2=0\)

27 tháng 5 2018

Từ đề bài \(\Rightarrow4x^2+4y^2+4xy-24x-24y+44=0\)

\(\Leftrightarrow\left(2x+y\right)^2-24x-12y+36+3y^2-12y+12-4=0\)

\(\Leftrightarrow\left(2x+y-6\right)^2+3\left(y-2\right)^2-4=0\)

\(\Leftrightarrow\left(2x+y-6\right)^2=4-3\left(y-2\right)^2\le4\forall x;y\)

\(\Leftrightarrow-2\le2x+y-6\le2\Rightarrow4\le2x+y\le8\)

Do đó \(4\le P\le8\)

7 tháng 7 2018

\(\left(\sqrt{x^2-4x+5}\right)\) \(+\left(\sqrt{9y^2-6y+1}\right)\)\(=1\)

<=>\(\left(\sqrt{\left(x-2\right)^2+1}\right)\) \(+\sqrt{\left(3y-1\right)^2}\)\(=1\)

<=>\(\left(x-2\right)^2+1+\left(3y-1\right)^2\) \(=1\)

<=>\(\left(x-2\right)^2+\left(3y-1\right)^2=0\)

<=>\(\orbr{\begin{cases}\left(x-2\right)^2=0\\\left(3y-1\right)^2=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\y=\frac{1}{3}\end{cases}}\)

5 tháng 6 2017

\(2x^2+7x+7y+2xy+y^2+12=0\)

\(\Leftrightarrow\left(x^2+y^2+4+2\left(xy+2x+2y\right)\right)+3\left(x+y+2\right)+2=-x^2\)

\(\Leftrightarrow\left(x+y+2\right)^2+3\left(x+y+2\right)+2=-x^2\)

\(\Leftrightarrow P^2+3P+2=-x^2\le0\)

\(\Leftrightarrow-2\le P\le-1\)

4 tháng 6 2017

sorry , em lớp 6 , hu hu 

24 tháng 12 2017

https://olm.vn/hoi-dap/question/1117914.html