Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{1-x}+\frac{y}{1-y}=1\)
\(\Leftrightarrow\frac{x+y-2xy}{\left(x-1\right)\left(y-1\right)}=1\)
\(\Rightarrow x+y-2xy=xy-x-y+1\)
\(\Rightarrow2\left(x+y\right)-1=3xy\)
Lại có: \(P=x+y+\sqrt{x^2-xy+y^2}\)
\(=x+y+\sqrt{\left(x+y\right)^2-3xy}\)
\(=x+y+\sqrt{\left(x+y\right)^2-2\left(x+y\right)+1}\)
\(=x+y+\sqrt{\left(x+y-1\right)^2}\)
Mặt khác: \(\frac{x}{1-x}+\frac{y}{1-y}=1\); \(0< x;y< 1\)
\(\Rightarrow\frac{x}{x-1}< 1\)
\(\Rightarrow x< \frac{1}{2}\)
Tương tự: \(y< \frac{1}{2}\)
=> x+y <1
Do đó P=1
Đề bài sai:
\(0< x< 1\Rightarrow x-1< 0\Rightarrow\frac{x}{x-1}< 0\)
Tương tự: \(\frac{y}{y-1}< 0\)
\(\Rightarrow\frac{x}{x-1}+\frac{y}{y-1}< 0\Rightarrow\frac{x}{x-1}+\frac{y}{y-1}=1\) là hoàn toàn vô lý
từ cái đầu=>x-xy+y-xy=(1-x)(1-y)
<=>x+y-2xy=xy-x-y+1
<=>2(x+y)=3xy+1
\(\Leftrightarrow x+y=\frac{3xy+1}{2}\)
\(\sqrt{x^2-xy+y^2}=\sqrt{\left(x+y\right)^2-3xy}=\sqrt{\frac{9x^2y^2+6xy+1}{4}-3xy}=\sqrt{\frac{9x^2y^2-6xy+1}{4}}=\sqrt{\left(\frac{3xy-1}{2}\right)^2}\)với 3xy-1>0
\(\Rightarrow P=\frac{3xy+1}{2}+\frac{3xy-1}{2}=3xy\)
với 3xy-1<(=)0
\(\Rightarrow P=\frac{3xy+1}{2}+\frac{1-3xy}{2}=1\)
- Áp dụng bất đẳng thức Cô si ta có
\left(x.\frac{1}{2}+x.\frac{1}{2}+y.\frac{1}{2}+y.\frac{1}{2}+x.\sqrt{1-x^2}+y.\sqrt{1-x^2}\right)^2\le(x.21+x.21+y.21+y.21+x.1−x2+y.1−x2)2≤
\left(x^2+x^2+y^2+y^2+x^2+y^2\right)\left(\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+\frac{1}{4}+1-x^2+1-y^2\right)(x2+x2+y2+y2+x2+y2)(41+41+41+41+1−x2+1−y2)
tức là \left(x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\right)^2\le\left(3x^2+3y^2\right)\left(3-x^2-y^2\right)(x+y+x1−y2+y1−x2)2≤(3x2+3y2)(3−x2−y2)
Suy ra x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\sqrt{3}.\sqrt{\left(x^2+y^2\right)\left(3-x^2-y^2\right)}x+y+x1−y2+y1−x2≤3.(x2+y2)(3−x2−y2)
\le\sqrt{3}.\frac{\left(x^2+y^2\right)+\left(3-x^2-y^2\right)}{2}≤3.2(x2+y2)+(3−x2−y2)
hay x+y+x\sqrt{1-y^2}+y\sqrt{1-x^2}\le\frac{3\sqrt{3}}{2}x+y+x1−y2+y1−x2≤233 (đpcm)
Viết lại điều kiện đã cho dưới dạng
\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=6ab1+bc1+ca1+a1+b1+c1=6
Áp dụng bất đẳng thức hiển nhiên xy+yz+zx\le x^2+y^2+z^2xy+yz+zx≤x2+y2+z2 ta có
\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}ab1+bc1+ca1≤a21+b21+c21 (1)
Lại áp dụng x\le\frac{x^2+1}{2}x≤2x2+1, ta có \frac{1}{a}\le\frac{1}{2}\left(1+\frac{1}{a^2}\right)a1≤21(1+a21), do đó
\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\le\frac{1}{2}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{3}{2}a1+b1+c1≤21(a21+b21+c21)+23 (2)
Cộng theo vế (1), (2) và chú ý đến điều kiện ta được
6\le\frac{3}{2}\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)+\frac{3}{2}6≤23(a21+b21+c21)+23
Suy ra 3\le\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}3≤a21+b21+c21 (đpcm)