Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
\(\dfrac{x}{1-x^2}+\dfrac{y}{1-y^2}=\dfrac{x-xy^2+y-x^2y}{\left(1-x^2\right)\left(1-y^2\right)}=\dfrac{1-xy}{xy\left(x+1\right)\left(y+1\right)}\)
Áp dụng BĐT cauchy:
\(\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\dfrac{1}{4}\)
và \(\left(x+1\right)\left(y+1\right)\le\dfrac{1}{4}\left(x+y+2\right)^2=\dfrac{9}{4}\)
do đó \(VT\ge\dfrac{1-\dfrac{1}{4}}{\dfrac{1}{4}.\dfrac{9}{4}}=\dfrac{3}{4}.\dfrac{16}{9}=\dfrac{4}{3}\)
dấu = xảy ra khi x=y=\(\dfrac{1}{2}\)
Sai đề kìa.
Bạn tham khảo: Câu hỏi của Ngoc An Pham - Toán lớp 9 | Học trực tuyến
Ta có: \(\dfrac{1}{x}+\dfrac{1}{y}\) \(\ge\) \(\dfrac{2}{\sqrt{xy}}\) (1)
\(\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{2}{\sqrt{yz}}\) (2)
\(\dfrac{1}{z}+\dfrac{1}{x}\ge\dfrac{2}{\sqrt{xz}}\) (3)
Cộng (1);(2);(3) vế theo vế ta được:
\(2\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\ge2\left(\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\right)\)
=> \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{xz}}\) (đpcm)
\(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2xz}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{xz+2yz}\)
\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\dfrac{1}{\sqrt{3}}\)
\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{1}{\sqrt{xy}}+\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}\)
\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}\ge\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\)
\(\Rightarrow\dfrac{2}{x}+\dfrac{2}{y}+\dfrac{2}{z}-\dfrac{2}{\sqrt{xy}}+\dfrac{2}{\sqrt{yz}}+\dfrac{2}{\sqrt{zx}}\ge0\)
\(\Rightarrow\dfrac{1}{x}-\dfrac{2}{\sqrt{xy}}+\dfrac{1}{y}+\dfrac{1}{y}-\dfrac{2}{\sqrt{yz}}+\dfrac{1}{z}+\dfrac{1}{z}-\dfrac{2}{\sqrt{zx}}+\dfrac{1}{x}\ge0\)
\(\Rightarrow\left(\dfrac{1}{\sqrt{x}}-\dfrac{1}{\sqrt{y}}\right)^2+\left(\dfrac{1}{\sqrt{y}}-\dfrac{1}{\sqrt{z}}\right)^2+\left(\dfrac{1}{\sqrt{z}}-\dfrac{1}{\sqrt{x}}\right)^2\ge0\) (luôn đúng)
Dấu = xảy ra khi \(x=y=z\)
Ta có: \(\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{1+y}{8}+\dfrac{1+z}{8}\ge\dfrac{3x}{4}\)
\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}\ge\dfrac{6x-y-z-2}{8}\left(1\right)\)
Tương tự ta có: \(\left\{{}\begin{matrix}\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}\ge\dfrac{6y-z-x-2}{8}\left(2\right)\\\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{6z-x-y-2}{8}\left(3\right)\end{matrix}\right.\)
Từ (1), (2), (3)
\(\Rightarrow\dfrac{x^3}{\left(1+y\right)\left(1+z\right)}+\dfrac{y^3}{\left(1+z\right)\left(1+x\right)}+\dfrac{z^3}{\left(1+x\right)\left(1+y\right)}\ge\dfrac{6x-y-z-2}{8}+\dfrac{6y-z-x-2}{8}+\dfrac{6z-x-y-2}{8}\)
\(=\dfrac{1}{2}\left(x+y+z\right)-\dfrac{3}{4}\ge\dfrac{3}{2}-\dfrac{3}{4}=\dfrac{3}{4}\)
Làm biếng nghĩ quá. Chơi cách này cho mau vậy.
\(\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}\ge\frac{2}{\sqrt{3}}\)
\(\Leftrightarrow\frac{x}{\sqrt{3\left(1-x\right)\left(1+x\right)}}+\frac{y}{\sqrt{3\left(1-y\right)\left(1+y\right)}}\ge\frac{2}{3}\)
\(\Leftrightarrow\frac{x}{2-x}+\frac{y}{2-y}\ge\frac{2}{3}\)
\(\Leftrightarrow\frac{1-y}{1+y}+\frac{y}{2-y}\ge\frac{2}{3}\)
\(\Leftrightarrow4y^2-4y+1\ge0\)
\(\Leftrightarrow\left(2y-1\right)^2\ge0\left(đung\right)\)
Lời giải:
Ta có:
\(\text{VT}=\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{1+x^2y^2}=\frac{x+y}{xy}\sqrt{1+x^2y^2}=\frac{\sqrt{1+x^2y^2}}{xy}\)
Giờ thì biến đổi tương đương thôi. Ta có:
\(\text{VT}\geq \sqrt{17}\)
\(\Leftrightarrow \frac{\sqrt{1+x^2y^2}}{xy}\geq \sqrt{17}\)
\(\Leftrightarrow \frac{1+x^2y^2}{x^2y^2}\geq 17\) (do \(x,y\) dương)
\(\Leftrightarrow 1+x^2y^2\geq 17x^2y^2\Leftrightarrow 1\geq 16x^2y^2\)
\(\Leftrightarrow (1-4x)(1+4xy)\geq 0\)
BĐT trên luôn đúng do $x,y>0$ và theo BĐT AM-GM thì:
\(1=x+y\geq 2\sqrt{xy}\Rightarrow xy\leq \frac{1}{4}\Rightarrow 1-4xy\geq 0\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=\frac{1}{2}\)
Ta có \(x+y=1\)
\(\left(1+\dfrac{1}{x}\right)\left(1+\dfrac{1}{y}\right)=\left(1+\dfrac{x+y}{x}\right)\left(1+\dfrac{x+y}{y}\right)=\left(2+\dfrac{y}{x}\right)\left(2+\dfrac{x}{y}\right)\)
\(=5+\dfrac{2x}{y}+\dfrac{2y}{x}=5+2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
Theo Cosi \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\sqrt{\dfrac{x}{y}.\dfrac{y}{x}}=2\Rightarrow2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge4\Rightarrow5+2\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\ge9\)
Dấu ''='' xảy ra khi x = y