K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2016

Theo đề ta có \(\left(x+\frac{1}{y}\right)\in Z\) và \(\left(y+\frac{1}{x}\right)\in Z\)\(\Rightarrow\)\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)

hay \(\left(xy+\frac{1}{xy}+2\right)\in Z\)\(\Rightarrow\)\(\left(xy+\frac{1}{xy}\right)\in Z\)

Suy ra \(\left(xy+\frac{1}{xy}\right)^2\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}+2\right)\in Z\)\(\Rightarrow\)\(\left(x^2y^2+\frac{1}{x^2y^2}\right)\in Z\)

Vậy \(x^2y^2+\frac{1}{x^2y^2}\) là số nguyên (đpcm).

19 tháng 8 2016

\(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)=xy+2+\frac{1}{xy}\)

vì 2 nguyên nên \(xy+\frac{1}{xy}\)nguyên

\(\left(xy+\frac{1}{xy}\right)^2=x^2y^2+\frac{1}{x^2y^2}+2\)

nen \(x^2y^2+\frac{1}{x^2y^2}\)nguyên

1 tháng 1 2018

x+1/y và y+1/x là các số nguyên 

=> (x+1/y).(y+1/x) là số nguyên

<=> xy+1/xy+2 là số nguyên 

<=> xy+1/xy là số nguyên

<=> (xy+1/xy)^2 là số tự nhiên

<=> x^2y^2+1/x^2y^2+2 là số tự nhiên

=> x^2y^2+1/x^2y^2 là số nguyên

=> ĐPCM

k mk nha

1 tháng 1 2018

cảm ơn bạn/anh/chị/thầy/cô nhiều nha

6 tháng 12 2017

Vì \(x+\frac{1}{y}\in Z;y+\frac{1}{x}\in Z\)nên \(\left(x+\frac{1}{y}\right)\left(y+\frac{1}{x}\right)\in Z\)

=>\(xy+\frac{1}{xy}\in Z\)

=>\(\left(xy+\frac{1}{xy}\right)^3\)

=>\(x^3y^3+\frac{1}{x^3y^3}+3\left(xy+\frac{1}{xy}\right)\)\(\in Z\)

=>ĐPCM

9 tháng 10 2016

Gọi số cần tìm là A

Ta xét các trường hợp

voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu

voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu

Ma số nguyên tố chẵn duy nhất là 2 nên A = 2

ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2

Ta có x2y2 = 2x2 + 2y2

<=> x2(y2 - 2) = 2y2

<=> x2 = (2y2)/(y2 - 2) \(\ge\) 4

<=> y2 >= 2y2 - 4 

<=> y<= 4

vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)

Gọi số cần tìm là A

Ta xét các trường hợp

voi x, y lẻ thì tử lẻ mẫu chẵn nên A không phải số nguyên vì tử không chia hết cho mẫu

voi ít nhất x, y là chẵn thì A luôn là số chẵn nếu tử chia hết cho mẫu

Ma số nguyên tố chẵn duy nhất là 2 nên A = 2

ta thấy x = 1 không phải là số cần tìm nên ta xét x >= 2

Ta có x2y2 = 2x2 + 2y2

<=> x2(y2 - 2) = 2y2

<=> x2 = (2y2)/(y2 - 2) ≥ 4

<=> y2 >= 2y2 - 4 

<=> y2 <= 4

vi y nguyên dương nên y = 1 hoặc 2 thế vào ta tìm được giá trị (x; y) = (2;2)

22 tháng 9 2017

a) \(2xy^2+x+y+1=x^2+2y^2+xy\)

\(\Leftrightarrow2xy^2+x+y-x^2-2y^2-xy=-1\)

\(\Leftrightarrow2xy^2-2y^2+x-x^2+y-xy=-1\)

\(\Leftrightarrow2y^2\left(x-1\right)-x\left(x-1\right)-y\left(x-1\right)=-1\)

\(\Leftrightarrow\left(x-1\right)\left(2y^2-x-y\right)=-1\)

Để x nguyên thì x - 1 nguyên. Vậy thì \(x-1\in\left\{-1;1\right\}\)

Với x = 1, ta có \(2y^2-1-y=-1\Rightarrow2y^2-y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{1}{2}\left(l\right)\end{cases}}\)

Với x = -1, ta có \(2y^2+1-y=1\Rightarrow2y^2+y=0\Rightarrow\orbr{\begin{cases}y=0\left(n\right)\\y=\frac{-1}{2}\left(l\right)\end{cases}}\)

Vậy phương trình có nghiệm (x; y) = (1; 0) hoặc (-1; 0).

19 tháng 3 2017

b)

\(\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{ab}{a+b+2c}+\dfrac{bc}{2a+b+c}+\dfrac{ca}{a+2b+c}\le\dfrac{1}{4}\)

Áp dụng bất đẳng thức \(\dfrac{1}{a+b}\le\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\left\{{}\begin{matrix}\dfrac{ab}{a+b+2c}=\dfrac{ab}{a+c+b+c}\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)\\\dfrac{bc}{2a+b+c}=\dfrac{bc}{a+b+a+c}\le\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)\\\dfrac{ca}{a+2b+c}=\dfrac{ca}{a+b+b+c}\le\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\end{matrix}\right.\)

\(\Rightarrow VT\le\dfrac{ab}{4}\left(\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)+\dfrac{bc}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{a+b}+\dfrac{1}{b+c}\right)\)

\(\Rightarrow VT\le\dfrac{ab}{4\left(a+c\right)}+\dfrac{ab}{4\left(b+c\right)}+\dfrac{bc}{4\left(a+b\right)}+\dfrac{bc}{4\left(a+c\right)}+\dfrac{ca}{4\left(a+b\right)}+\dfrac{ca}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\left[\dfrac{ab}{4\left(a+c\right)}+\dfrac{bc}{4\left(a+c\right)}\right]+\left[\dfrac{bc}{4\left(a+b\right)}+\dfrac{ca}{4\left(a+b\right)}\right]+\left[\dfrac{ca}{4\left(b+c\right)}+\dfrac{ab}{4\left(b+c\right)}\right]\)

\(\Rightarrow VT\le\dfrac{ab+bc}{4\left(a+c\right)}+\dfrac{bc+ca}{4\left(a+b\right)}+\dfrac{ca+ab}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{b\left(a+c\right)}{4\left(a+c\right)}+\dfrac{c\left(a+b\right)}{4\left(a+b\right)}+\dfrac{a\left(b+c\right)}{4\left(b+c\right)}\)

\(\Rightarrow VT\le\dfrac{a+b+c}{4}\)

\(\Rightarrow VT\le\dfrac{1}{4}\)

\(\Leftrightarrow\dfrac{ab}{c+1}+\dfrac{bc}{a+1}+\dfrac{ca}{b+1}\le\dfrac{1}{4}\) ( đpcm )

Dấu " = " xảy ra khi \(a=b=c=\dfrac{1}{3}\)

19 tháng 3 2017

c lm hộ t bài số hqua t ms đăng nx đi