K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2017

\(\dfrac{1}{x^2+1}+\dfrac{1}{y^2+1}\ge\dfrac{2}{1+xy}\)

\(\Leftrightarrow\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}+\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\ge0\)

\(\Leftrightarrow\dfrac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{x\left(y-x\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{x\left(y-x\right)\left(1+y^2\right)+y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\forall x,y>1\)

15 tháng 4 2018

\(\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}\ge\dfrac{2}{1+xy}\)

\(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)

\(\left(\dfrac{1+xy-\left(1+x^2\right)}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-\left(1+y^2\right)}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)

\(\left(\dfrac{1+xy-1-x^2}{\left(1+x^2\right)\left(1+xy\right)}\right)+\left(\dfrac{1+xy-1-y^2}{\left(1+y^2\right)\left(1+xy\right)}\right)\ge0\)

\(\dfrac{-x\left(x-y\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{-y\left(y-x\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\dfrac{-x\left(x-y\right)\left(1+y^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)\left(1+x^2\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

=> -x(x-y)(1+y2)+y(x-y)(1+x2) ≥ 0

⇔ (x-y)[-x(1+y2)+y(1+x2)]≥0

⇔ (x-y)(-x-xy2+y+x2y) ≥0

⇔ (x-y)[-(x-y)+(x2y-y2x)] ≥ 0

⇔ (x-y)[-(x-y)+xy(x-y) ]≥ 0

⇔ (x-y)(x-y)(xy-1)≥ 0

⇔ (x-y)2 (xy-1) ≥0 (luôn đúng ∀ xy ≥ 1)

=> đpcm

22 tháng 3 2019

bạn pải giả sử trước chứ nếu ntn thì người chấm hỏi ai cho lôi phần chứng minh ra làm phần mục đề

9 tháng 5 2018

\(H=\dfrac{1}{1+xy}+\dfrac{1}{1+yz}+\dfrac{1}{1+xz}\ge\dfrac{\left(1+1+1\right)^2}{3+xy+yz+xz}=\dfrac{9}{3+xy+yz+xz}\)

Mặt khác,theo AM-GM: \(xy+yz+xz\le x^2+y^2+z^2=3\)

\(\Rightarrow\dfrac{9}{3+xy+yz+xz}\ge\dfrac{9}{3+3}=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu "=" khi: \(x=y=z=1\)

19 tháng 8 2017

b) \(x,y\ge1\Rightarrow xy\ge1\)

BĐT đã cho tương đương với:

\(\left(\dfrac{1}{1+x^2}-\dfrac{1}{1+xy}\right)+\left(\dfrac{1}{1+y^2}-\dfrac{1}{1+xy}\right)\ge0\)

\(\Leftrightarrow\dfrac{xy-x^2}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{xy-y^2}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow+\dfrac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\dfrac{y\left(x-y\right)}{\left(1+y^2\right)\left(1+xy\right)}\ge0\)

\(\Leftrightarrow\dfrac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\)

BĐT cuối luôn đúng nên ta có đpcm

Đẳng thức xảy ra khi x=y hoặc xy=1

20 tháng 7 2017

Chứng minh 1/(1+x)^2 + 1/(1+y)^2 luôn >= 1/(1+xy)? | Yahoo Hỏi & Đáp

Nhấn vào link đó!

14 tháng 6 2017

\(M=\dfrac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{yz\sqrt{x-1}}{xyz}+\dfrac{xz\sqrt{y-2}}{xyz}+\dfrac{xy\sqrt{z-3}}{xyz}\)

\(=\dfrac{\sqrt{x-1}}{x}+\dfrac{\sqrt{y-2}}{y}+\dfrac{\sqrt{z-3}}{z}\)

Áp dụng BĐT AM-GM ta có:

\(\sqrt{x-1}\le\dfrac{1+x-1}{2}=\dfrac{x}{2}\)\(\Rightarrow\dfrac{\sqrt{x-1}}{x}\le\dfrac{x}{2}\cdot\dfrac{1}{x}=\dfrac{1}{2}\)

\(\sqrt{y-2}=\dfrac{\sqrt{2\left(y-2\right)}}{\sqrt{2}}\le\dfrac{y}{2\sqrt{2}}\)\(\Rightarrow\dfrac{\sqrt{y-2}}{y}\le\dfrac{y}{2\sqrt{2}}\cdot\dfrac{1}{y}=\dfrac{1}{2\sqrt{2}}\)

\(\sqrt{z-3}=\dfrac{\sqrt{3\left(z-3\right)}}{\sqrt{3}}\le\dfrac{z}{2\sqrt{3}}\)\(\Rightarrow\dfrac{\sqrt{z-3}}{z}\le\dfrac{z}{2\sqrt{3}}\cdot\dfrac{1}{z}=\dfrac{1}{2\sqrt{3}}\)

Cộng theo vế 3 BĐT trên ta có:

\(M\le\dfrac{1}{2}\left(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}\right)\) (ĐPCM)

16 tháng 10 2017

z đâu ra??? hum

16 tháng 10 2017

28 tháng 2 2018

Áp dụng BĐT Cô si cho 2 số dương a,b ta có \(\dfrac{a+b}{2}\ge\sqrt{ab}\)

\(\dfrac{1}{a}+\dfrac{1}{b}\ge2.\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=>\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}\)

suy ra \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\).Áp dụng vào bài toán ta có :\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{4}{x^2+xy+y^2+xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (Do \(x+y\le1\))

28 tháng 2 2018

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{\left(1+1\right)^2}{x^2+2xy+y^2}=\dfrac{4}{\left(x+y\right)^2}\ge\dfrac{4}{1}=4\)

5 tháng 4 2018

Áp dụng bất đẳng thức AM-GM:

\(\dfrac{x^3}{x^2+y^2}=\dfrac{x\left(x^2+y^2\right)-xy^2}{x^2+y^2}=x-\dfrac{xy^2}{x^2+y^2}\ge x-\dfrac{xy^2}{2xy}=x-\dfrac{y}{2}\)