Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức svác sơ ta có
\(A\ge\frac{\left(x+y+z\right)^2}{y+3z+z+3x+x+3y}=\frac{\left(x+y+z\right)^2}{4\left(x+y+z\right)}=\frac{x+y+x}{4}=\frac{3}{4}\)
Đặt \(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}\)
Áp dụng bất đẳng thức Canchy Schwarz dạng Engel :
\(P=\frac{x^2}{y+3z}+\frac{y^2}{z+3x}+\frac{z^2}{x+3y}>\frac{\left(x+y+z\right)^2}{y+3y+z+3z+x+3x}=\frac{\left(x+y+z\right)^2}{4x+4y+4z}=\frac{\left(x+y+z\right)^2}{4.\left(x+y+z\right)}=\frac{3^2}{4}=\frac{3}{4}\)
Dấu " = " xảy ra khi x=y=z=1.
Bạn ko hiểu về BĐT
\n\nĐể chứng minh 1 đề bài sai, bạn chỉ cần lấy 1 phản ví dụ là đủ
\n1/ Với số dương ta luôn có \(\frac{x}{y}+\frac{y}{x}\ge2\) (Cauchy hoặc quy đồng chuyển vế sẽ chứng minh được dễ dàng). Ta cần chứng minh:
\(\frac{x^2}{y^2}+\frac{y^2}{x^2}+2.\frac{x}{y}.\frac{y}{x}+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2+2\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\) (1)
Đặt \(\frac{x}{y}+\frac{y}{x}=a\ge2\) thì (1) trở thành:
\(a^2+2\ge3a\Leftrightarrow a^2-3a+2\ge0\Leftrightarrow\left(a-1\right)\left(a-2\right)\ge0\) (2)
Do \(a\ge2\Rightarrow\left\{{}\begin{matrix}a-1>0\\a-2\ge0\end{matrix}\right.\Rightarrow\left(a-1\right)\left(a-2\right)\ge0\)
\(\Rightarrow\left(2\right)\) đúng, vậy BĐT được chứng minh. Dấu "=" xảy ra khi \(x=y\)
2/ \(B=\left(x^2-2x\right)\left(y^2+6y\right)+12\left(x^2-2x\right)+3\left(y^2+6y\right)+2045\)
\(B=\left(x^2-2x\right)\left(y^2+6y+12\right)+3\left(y^2-6y+12\right)-36+2045\)
\(B=\left(x^2-2x+3\right)\left(y^2+6y+12\right)+2009\)
\(B=\left[\left(x-1\right)^2+2\right]\left[\left(y+3\right)^2+3\right]+2009\)
Do \(\left\{{}\begin{matrix}\left(x-1\right)^2+2\ge2\\\left(y+3\right)^2+3\ge3\end{matrix}\right.\)
\(\Rightarrow B\ge2.3+2009=2015\)
\(\Rightarrow B_{min}=2015\) khi \(\left\{{}\begin{matrix}x=1\\y=-3\end{matrix}\right.\)
2. Có hai cách nhé
Cách 1: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3y(y + 6) + 36
--> P = [ 12x(x - 2) + 36 ] + xy(x - 2)(y + 6) + 3y(y + 6)
--> P = 12[x(x - 2) + 3] + y(y + 6).[x(x - 2) + 3]
--> P = [x(x - 2) + 3].[y(y + 6) + 12]
--> P = (x² - 2x + 3)(y² + 6y + 12)
--> P = [(x - 1)² + 2].[(y + 3)² + 3] ≥ 2.3 = 6 > 0
Dấu " = " xảy ra ⇔ x = 1 ; y = -3
Vậy MinP = 6 ⇔ x = 1 ; y = -3
Cách 2: P = xy(x - 2)(y + 6) + 12x² - 24x + 3y² + 18y + 36
--> P = xy(x - 2)(y + 6) + 12x(x - 2) + 3(y + 3)² + 9
--> P = x(x - 2)[y(y - 6) + 12] + 3(y + 3)² +9
--> P = x(x - 2)[(y + 3)² + 3] + 3(y + 3)² + 9
--> P = x(x - 2)(y + 3)² + 3x(x - 2) + 3(y + 3)² + 9
--> P = (y + 3)²[x(x - 2) + 3] + 3x(x - 2) + 9
--> P = (y + 3)²[(x - 1)² + 2] + 3x² - 6x + 9
--> P = (y + 3)²(x - 1)² + 2(y + 3)² + 3(x - 1)² + 6 ≥ 6
Dấu " = " xảy ra ⇔ x = 1 ; y = -3
Vậy MinP = 6 ⇔ x = 1 ; y = -3
P/S: MinP = 6 > 0 ∀ x, y ∈ R --> P luôn dương ∀ x, y ∈ R
Mình nghĩ phần CM: "P luôn dương với mọi x,y thuộc R." là hơi thừa :-)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Ta có : \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\ge3\left(\frac{x}{y}+\frac{y}{x}\right)\) (*)
\(\Leftrightarrow\frac{x^2}{y^2}+2.\frac{x}{y}.\frac{y}{x}+\frac{y^2}{x^2}-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\ge0\) (**)
Đặt \(\frac{x}{y}+\frac{y}{x}=t\Rightarrow t\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\)
Vậy thì \(\left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2=t^2-3t+2=\left(t-\frac{3}{2}\right)^2-\frac{1}{4}\)
\(\ge\left(2-\frac{3}{2}\right)^2-\frac{1}{4}=0\)
Vậy bất đẳng thức (**) đúng hay bất đẳng thức (*) đúng
Ta có : \(\frac{x}{4y^2+1}=x-\frac{4xy^2}{4y^2+1};\frac{y}{4x^2+1}=y-\frac{4x^2y}{4x^2+1}\)
Áp dụng BĐT Cauchy ta có :
\(4y^2+1\ge4y;4x^2+1\ge4x\)
\(\Rightarrow x-\frac{4xy^2}{4y^2+1}+y-\frac{4x^2y}{4x^2+1}\ge x-\frac{4xy^2}{4y}+y-\frac{4x^2y}{4x}\)
\(=x+y-2xy=2xy\)
Đến đây ta áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)
\(x+y=4xy\Leftrightarrow\frac{1}{xy}=\frac{4}{x+y}\le\frac{1}{x}+\frac{1}{y}=\frac{x+y}{xy}=4\)
\(\Leftrightarrow\frac{1}{xy}\le4\Leftrightarrow2xy\ge\frac{1}{2}\)
\(\Leftrightarrow\frac{x}{4y^2+1}+\frac{y}{4x^2+1}\ge\frac{1}{2}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x=y\\4y^2=1\\4x^2=1\end{cases}\Leftrightarrow x=y=\frac{1}{2}}\)
Bạn trên đã chứng minh \(xy\ge\frac{1}{4}\) rồi nên mình xin phép không trình bày
Áp dụng BĐT Cauchy Schwarz ta dễ có:
\(LHS=\frac{x^2}{4xy^2+x}+\frac{y^2}{4x^2y+y}\)
\(\ge\frac{\left(x+y\right)^2}{4xy\left(x+y\right)+\left(x+y\right)}=\frac{\left(x+y\right)^2}{\left(x+y\right)^2+\left(x+y\right)}\)
Ta cần đi chứng minh:
\(\frac{\left(x+y\right)^2}{\left(x+y\right)^2+\left(x+y\right)}\ge\frac{1}{2}\)
\(\Leftrightarrow\left(x+y\right)^2\ge x+y\Leftrightarrow x+y\ge1\)
Điều này là hiển nhiên vì theo AM - GM ta có:\(x+y\ge2\sqrt{xy}=1\)
Vậy ta có đpcm
áp dụng tam bậc thức
đa thức cao hơn 2
biểu thức là 1 phân thức
có thể lm bài đc đó
áp dụng tam bậc thức
đa thức cao hơn 2
biểu thức là 1 phân thức
có thể lm bài đc đó