K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2017

help me, please!!!!

Akai Haruma Nguyễn Huy Tú Ace Legona soyeon_Tiểubàng giải Phương An,....

26 tháng 12 2017

Ta có:

\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)    và x+y=2

Xét dấu =

Dấu ''='' xảy ra khi và chỉ khi

x=y=1

Dấu ''<'' xảy ra khi và chỉ khi x và y khác 1

Hết.

Em mới học lớp 7 nên ko biết đúng ko

AH
Akai Haruma
Giáo viên
25 tháng 12 2017

Lời giải:

TH1: \(x,y\) đều dương.

Xét hiệu:

\(2(x^{2018}+y^{2018})-(x+y)(x^{2017}+y^{2017})=x^{2018}+y^{2018}-xy^{2017}-x^{2017}y\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=x^{2017}(x-y)-y^{2017}(x-y)\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)(x^{2017}-y^{2017})\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)(x-y)(x^{2016}+...+y^{2016})\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})-2(x^{2017}+y^{2017})=(x-y)^2(x^{2016}+...+y^{2016})\geq 0\) với mọi \(x,y>0\)

\(\Leftrightarrow 2(x^{2018}+y^{2018})\geq 2(x^{2017}+y^{2017})\)

\(\Leftrightarrow x^{2018}+y^{2018}\geq x^{2017}+y^{2017}\) (1)

TH2: \(x,y\) trái dấu. Giả sử \(x>0; y< 0\)

\(x+y=2\Rightarrow x=2-y> 2\)

\(x^{2018}+y^{2018}-(x^{2017}+y^{2017})=x^{2017}(x-1)+y^{2017}(y-1)\)

Vì \(x>2 \Rightarrow x^{2017}(x-1)>0\)

\(y< 0\Rightarrow y^{2017}< 0; y-1< 0\Rightarrow y^{2017}(y-1)>0\)

Do đó: \(x^{2018}+y^{2018}-(x^{2017}+y^{2017})=x^{2017}(x-1)+y^{2017}(y-1)>0\)

\(\Rightarrow x^{2018}+y^{2018}> x^{2017}+y^{2017}\) (2)

Từ (1),(2) ta có đpcm.

4 tháng 1 2018

\(x^{2017}+y^{2017}\le x^{2018}+y^{2018}\)

\(\Leftrightarrow\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\)

\(\Leftrightarrow xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\)

\(\Leftrightarrow x^{2018}-x^{2017}y-xy^{2017}+y^{2018}\ge0\)

\(\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^{2016}+x^{2015}y+...+y^{2016}\right)\ge0\)

Đến đây dễ rồi bạn tự làm tiếp nhê

7 tháng 3 2020

Làm tiếp kiểu j bạn???

4 tháng 1 2018

Ta có BĐT cần chứng minh <=>\(\left(x+y\right)\left(x^{2017}+y^{2017}\right)\le2\left(x^{2018}+y^{2018}\right)\Leftrightarrow x^{2018}+y^{2018}+xy^{2017}+x^{2017}y\le2\left(x^{2018}+y^{2018}\right)\)

<=>\(xy^{2017}+x^{2017}y\le x^{2018}+y^{2018}\Leftrightarrow x^{2017}\left(x-y\right)-y^{2017}\left(x-y\right)\ge0\)

<=>\(\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

vì vai trò của x,y như nhau , giả sử \(x\ge y\Rightarrow x^{2017}\ge y^{2017}\Rightarrow\left(x-y\right)\left(x^{2017}-y^{2017}\right)\ge0\)

=> BĐT cần chứng minh luôn đúng 

=> ĐPCM 

dâu = xảy ra <=> x=y=1

^_^

25 tháng 9 2018

\(x^{2015}+y^{2015}=x^{2016}+y^{2016}=x^{2017}+y^{2017}\)

\(\Rightarrow x=y=1\) hoặc \(x=y=0\)

Với \(x=y=1\)

\(S=2018\left(1^{2018}+1^{2018}\right)\)

\(S=2018.2\)

\(S=4036\)

Với \(x=y=0\)

\(S=2018\left(0^{2018}+0^{2018}\right)\)

\(S=0\)

AH
Akai Haruma
Giáo viên
25 tháng 9 2018

Lời giải:

Từ điều kiện đề bài suy ra:

\(\left\{\begin{matrix} x^{2016}+y^{2016}-x^{2017}-y^{2017}=0\\ x^{2017}+y^{2017}-x^{2018}-y^{2018}=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x^{2016}(1-x)+y^{2016}(1-y)=0\\ x^{2017}(1-x)+y^{2017}(1-y)=0\end{matrix}\right.\)

\(\Rightarrow x^{2016}(1-x)(1-x)+y^{2016}(1-y)(1-y)=0\) (trử theo vế)

\(\Leftrightarrow x^{2016}(1-x)^2+y^{2016}(1-y)^2=0\)

Dễ thấy \(x^{2016}(1-x)^2; y^{2016}(1-y)^2\geq 0\) nên để tổng của chúng bằng $0$ thì:
\(x^{2016}(1-x)^2=y^{2016}(1-y)^2=0\)

\(\Rightarrow (x,y)=(0,1), (0,0), (1,1)\) và hoán vị của nó

Thử lại vào đk ban đầu thấy thỏa mãn

Do đó: \(A=x^{2019}+y^{2019}\in\left\{0; 1;2\right\}\)

25 tháng 9 2018

\(x^{2016}+y^{2016}=x^{2017}+y^{2017}=x^{2018}+y^{2018}\left(x,y\ge0\right)\)

\(\Rightarrow x=y=1\)

\(\Rightarrow A=1^{2019}+1^{2019}\)

\(\Rightarrow A=2\)