K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2017

5553/772.777/76

25 tháng 3 2019

a,\(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)

\(\Leftrightarrow\sqrt{x-1+4\sqrt{x-1+4}}+\sqrt{x-1-6\sqrt{x-1}+9}=5\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x-1+2}\right)^2}+\sqrt{\left(\sqrt{x-1-3}\right)^2}=5\)

\(\Leftrightarrow\sqrt{x-1}+2+|\sqrt{x-1}-3|=5\Leftrightarrow|\sqrt{x-1}-3|=3-\sqrt{x-1}\)

\(\Leftrightarrow\sqrt{x-1}-3\le0\left(|A|=-A\Leftrightarrow A\le0\right)\)

\(\Leftrightarrow\sqrt{x-1}\le3\Leftrightarrow0\le x-1\le3^2\Leftrightarrow1\le x\le10\)

Nghiệm của phương trình đã cho là : \(1\le x\le10\)

25 tháng 3 2019

b, \(\left(4x+1\right)\left(12x-1\right)\left(3x+2\right)\left(x+1\right)=4\)

\(\Leftrightarrow\left[\left(4x+1\right)\left(3x+2\right)\right]\left[\left(12x-1\right)\left(x+1\right)\right]=4\)

\(\Leftrightarrow\left(12x^2+8x+3x+2\right)\left(12x^2+12x-x-1\right)=4\)

\(\Leftrightarrow\left(12x^2+11x+2\right)\left(12x^2+11x-1\right)=4\)

\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}+\frac{3}{2}\right)\left(12x^2+11x+\frac{1}{2}-\frac{3}{2}\right)=4\)

\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2-\left(\frac{3}{2}\right)^2=4\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2=4+\frac{9}{4}\)

\(\Leftrightarrow\left(12x^2+11x+\frac{1}{2}\right)^2=\left(\frac{5}{2}\right)^2\Leftrightarrow\orbr{\begin{cases}12x^2+11x+\frac{1}{2}=\frac{5}{2}\\12x^2+11x+\frac{1}{2}=-\frac{5}{2}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}12x^2+11x-2=0\left(1\right)\\12x^2+11x+3=0\left(2\right)\end{cases}}\)

Giải (1)          \(\Delta=121+96=217\)

                      \(x_1=\frac{-11+\sqrt{217}}{24};x_2=\frac{-11-\sqrt{217}}{24}\)

Giải (2)        \(\Delta=121-144=-23< 0\).Phương trình vô nghiệm.

Phương trình có 2 nghiệm phân biệt :

\(x_1=\frac{-11+\sqrt{217}}{24};x_2=\frac{-11-\sqrt{217}}{24}\)

3 tháng 2 2020

Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)

Ta có \(a^3+b^3=32\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)=32\left(^∗\right)\)

\(a^3.b^3=\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)

\(\Rightarrow ab=-4\)

Kết hợp với \(\left(^∗\right)\) \(\Rightarrow\left(a+b\right)^3+12\left(a+b\right)=32\)

\(\Rightarrow a+b=2=x\)

Thay \(x=2\)vào \(f\left(x\right)\)ta được :

\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016}^{^{2017}}=1^{2016^{2017}}=1\)

Chúc bạn học tốt !!!

22 tháng 3 2017

Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)

Ta có: a3 + b3 = 32

=> (a + b)3 - 3ab(a + b) = 32 (*)

a3.b3 = \(\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)

=> ab = -4

Kết hợp với (*) => (a + b)3 + 12(a + b) = 32

=> a + b = 2 = x

Thay x = 2 vào f(x) ta được:

\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016^{2017}}=1^{2016^{2017}}=1\)

22 tháng 7 2018

\(1a.A=\left(\dfrac{1}{\sqrt{x}-3}-\dfrac{1}{\sqrt{x}+3}\right):\dfrac{3}{\sqrt{x}-3}=\dfrac{6}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{\sqrt{x}-3}{3}=\dfrac{2}{\sqrt{x}+3}\) ( x ≥ 0 ; x # 9 )

\(b.A>\dfrac{1}{3}\)\(\dfrac{2}{\sqrt{x}+3}>\dfrac{1}{3}\text{⇔}\dfrac{3-\sqrt{x}}{3\left(\sqrt{x}+3\right)}>0\)

\(3-\sqrt{x}>0\)

\(x< 9\)

Kết hợp ĐKXĐ , ta có : \(0\text{≤}x< 9\)
\(c.\) Tìm GTLN chứ ?

\(A=\dfrac{2}{\sqrt{x}+3}\text{≤}\dfrac{2}{3}\)

\(A_{MAX}=\dfrac{2}{3}."="x=0\left(TM\right)\)

22 tháng 7 2018

\(a.VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=2\sqrt{6}-4\sqrt{2}+9+4\sqrt{2}-2\sqrt{6}=9=VP\)Vậy , đẳng thức được chứng minh .

\(b.VT=\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\dfrac{\sqrt{3+2\sqrt{3}+1}+\sqrt{3-2\sqrt{3}+1}}{\sqrt{2}}=\dfrac{\sqrt{3}+1+\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}=VP\)Vậy , đẳng thức được chứng minh .

\(c.VT=\sqrt{\dfrac{4}{\left(2-\sqrt{5}\right)^2}}-\sqrt{\dfrac{4}{\left(2+\sqrt{5}\right)^2}}=\dfrac{2}{\sqrt{5}-2}-\dfrac{2}{\sqrt{5}+2}=\dfrac{2\left(\sqrt{5}+2\right)-2\left(\sqrt{5}-2\right)}{5-4}=8=VP\)Vậy , đẳng thức được chứng minh .