Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có: S = x+y
=> S=( x+2)+(y+2) - 4
AD BDDT cô-si ta có: \(\left(x+2\right)+\left(y+2\right)\ge2\sqrt{\left(x+2\right).\left(y+2\right)}=2.3=6\)
=> \(S\ge2\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x+2=y+2\\\left(x+2\right).\left(y+2\right)=9\end{cases}\Leftrightarrow x=y=1}\)( TM đk x>0; y>0)
KL: MinS = 2 tại x=y=1
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
+) Áp dingj BĐT Bu-nhia có
\(\left(x+y\right)^2=\left(x.1+y.1\right)^2\le\left(x^2+y^2\right).\left(1^2+1^2\right)\)
\(\Rightarrow1\le2\left(x^2+y^2\right)\Rightarrow x^2+y^2\ge\frac{1}{2}\)
Min P=\(\frac{1}{2}\) khi \(x=y=\frac{1}{2}\)
+)\(P=x^2+y^2=\left(x+y\right)^2-2xy\le\left(x+y\right)^2=1\) (vì \(x;y\ge0\) và \(x+y=1\))
\(\Rightarrow Max\)P=1 khi \(x.y=0\Leftrightarrow\)x=0 hoặc y=0
Vậy Max P =1 khi x=0,y=1 hoặc x=1,y=0
Áp dụng BĐT Cauchy có:
S= \(\frac{1}{x}\)+ \(\frac{4}{y}\)+\(\frac{9}{z}\)= \(\frac{1^2}{x}\)+ \(\frac{2^2}{y}\)+\(\frac{3^2}{z}\)>= \(\frac{\left(1+2+3\right)^2}{x+y+z}\)= \(\frac{6^2}{1}\)=36
Vậy Min S=36
\(P=x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}\)
\(=x^2+y^2+1+\frac{9}{x^2+y^2+1}+3x+3y-1\)
\(\ge2.3.\frac{\sqrt{x^2+y^2+1}}{\sqrt{x^2+y^2+1}}+2.3.\sqrt{xy}-1\)
\(=6+6-1=11\)
Dấu = xảy ra khi x = y = 1
\(x+y=\left(x+2\right)+\left(y+2\right)-4\ge2\sqrt{\left(x+2\right)\left(y+2\right)}-4=6\)