Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{2020}{x}-2019\) (ĐKXĐ: \(x\ne0\))
B đạt GTLN <=> \(\frac{2020}{x}\)là số dương (\(\frac{2020}{x}>0\))
<=> \(x>0\)(vì \(2020>0\)), mà \(x\in Z\)=> \(x\ge1\)
<=> \(\frac{2020}{x}\le\frac{2020}{1}\)
<=> \(\frac{2020}{x}-2019\le2020-2019=1\)
Dấu "=" xảy ra <=> x = 1 (tmđkxđ)
Vậy GTLN của B là 1, tại x = 1.
Bạn hỏi câu này bên Hoidap247 đúng không nè? :)
a) Ta có : \(\left(x+1\right)^{2020}\ge0\forall x\inℤ\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\le2019\)
Dấu "=" xảy ra khi \(\left(x+1\right)^{2020}=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Vậy GTLN của P = 2019 tại \(x=-1\).
b) Ta có : \(\left|2019-x\right|\ge0\forall x\inℤ\)
\(\Rightarrow2020-\left|2019-x\right|\le2020\)
Dấu "=" xảy ra khi \(\left|2019-x\right|=0\)
\(\Rightarrow2019-x=0\)
\(\Rightarrow x=2019\)
Vậy GTLN của Q = 2020 tại \(x=2019\).
a) \(P=2019-\left(x+1\right)^{2020}\)
Ta có \(\left(x+1\right)^{2020}\ge0\forall x\)
\(\Rightarrow2019-\left(x+1\right)^{2020}\ge2019\)
Dáu "=" xảy ra <=> \(\left(x+1\right)^{2020}=0\)
<=> x+1=0
<=> x=-1
Vậy MaxA=2019 đạt được khi x=-1
b) \(Q=2020-\left|2019-x\right|\)
Ta có \(\left|2019-x\right|\ge0\forall x\)
\(\Rightarrow2020-\left|2019-x\right|\ge2020\)
Dấu "=" xảy ra <=> |2019-x|=0
<=> 2019-x=0
<=> x=2019
Vậy MaxQ=2020 đạt được khi x=2019
a)\(M=\frac{2019\times2020-2}{2018+2018\times2020}=\frac{2019\times2020-2}{2018+2018\times2020+2020-2020}=\frac{2019\times2020-2}{\left(2018+1\right)\times2020+2018-2020}=\frac{2019\times2020-2}{2019\times2020-2}=1\\ N=\frac{-2019\times20202020}{20192019\times2020}=\frac{-2019\times10001\times2020}{2019\times10001\times2020}=-1\)
b)\(5\left|x-1\right|=3M-2N=5\\ \left|x-1\right|=1\Rightarrow\hept{\begin{cases}x-1=1\Rightarrow x=2\\x-1=-1\Rightarrow x=0\end{cases}}\)
Số tự nhiên x thỏa mãn 2019 , 67 < x < 2020 , 95 là ?
A . 2019
B . 67
C . 2020
D . 95
Để P đạt GTLN
=> x - 2020 nhỏ nhất và x - 2020 > 0 ; x - 2020 \(\ne\)0
=> x - 2020 = 1
=> x = 2021
=> GTLN Của P = \(\frac{2019}{2021-2020}=\frac{2019}{1}=2019\)
Vậy GTLN của P là 2019 khi x = 2021
x + ( -2019) = ( -2019 ) + 2020
x = 2020 [cộng hai bên cho ( -2019 ) ]
Vậy x = 2020
\(x+\left(-2019\right)=-2019+2020\)
\(=>x=-2019+2020+2019=>x=2020\)
ok