Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D O H
Hạ CH vuông góc với OB tại H. Theo quan hệ đường xiên hình chiếu:
\(CH\le OC\Leftrightarrow CH.OB\le OC.OB\Leftrightarrow2.S_{BOC}\le OC.OB\)(Do \(S_{BOC}=\frac{CH.OB}{2}\))
Áp dụng BĐT Cauchy, ta có: \(OC.OB\le\frac{OC^2+OB^2}{2}\)
\(\Rightarrow2.S_{BOC}\le\frac{OC^2+OB^2}{2}\left(1\right)\). Chứng minh tương tự ta được:
\(2.S_{AOB}\le\frac{OA^2+OB^2}{2}\left(2\right);2.S_{DOC}\le\frac{OD^2+OC^2}{2}\left(3\right);2.S_{AOD}\le\frac{OA^2+OD^2}{2}\left(4\right)\)
Cộng (1); (2); (3) và (4) theo vế:
\(2.\left(S_{BOC}+S_{AOB}+S_{DOC}+S_{AOD}\right)\le\frac{2.\left(OA^2+OB^2+OC^2+OD^2\right)}{2}\)
\(\Rightarrow2S\le OA^2+OB^2+OC^2+OD^2\)=> ĐPCM.
\(2.S_{BOC}\le OC.OB\). Dấu "=" xảy ra <=> OC vuông góc với OB
\(OC.OB\le\frac{OC^2+OB^2}{2}\). Dấu "=" xảy ra <=> OC=OB
Suy ra \(2.S_{BOC}\le\frac{OC^2+OB^2}{2}\). Dấu "=" xảy ra <=> \(\Delta\)BOC vuông cân tại O
Tương tự với các tam giác AOB; AOD; DOC.
Vậy dấu "=" xảy ra <=> Tứ giác ABCD là hình vuông và O là tâm của hình vuông này.
1:
ΔOAB vuông tại O
=>AB^2=AO^2+BO^2
ΔBOC vuông tại O
=>BC^2=BO^2+CO^2
ΔAOD vuông tại O
=>AD^2=AO^2+DO^2
ΔDOC vuông tại O
=>DC^2=OC^2+OD^2
AB^2+BC^2+CD^2+DA^2
=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2
=2(OA^2+OB^2+OC^2+OD^2)
2:
AB^2+CD^2
=OA^2+OB^2+OC^2+OD^2
=OA^2+OD^2+OB^2+OC^2
=AD^2+BC^2
vì tam giác OAB vuông tại O, theo pytago
OA^2 + OB^2 = AB^2
vì tam giác OAD vuông tại O, theo pytago
OA^2 + OD^2 = AD^2
vì tam giác ODC vuông tại O, theo pytago
OD^2 + OC^2 = DC^2
vì tam giác OBC vuông tại O, theo pytago
OB^2 + OC^2 = BC^2
cộng vế với vế của từng đẳng thức trên ta được
AB^2 + BC^2 + CD^2 + DA^2 = 2(OA^2 + OB^2 + OC^2 + OD^2)
vì tam giác OAB vuông tại O, theo pytago
OA^2 + OB^2 = AB^2
vì tam giác OAD vuông tại O, theo pytago
OA^2 + OD^2 = AD^2
vì tam giác ODC vuông tại O, theo pytago
OD^2 + OC^2 = DC^2
vì tam giác OBC vuông tại O, theo pytago
OB^2 + OC^2 = BC^2
cộng vế với vế của từng đẳng thức trên ta được
AB^2 + BC^2 + CD^2 + DA^2 = 2(OA^2 + OB^2 + OC^2 + OD^2)
B A D C O M E
a)+)tứ giác ABCD có 2 đường chéo bằng nhau AC=BD , vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
=> Tứ giác ABCD là hình vuông
+) Tam giác AOB vuông tại O, có OA=OB=R, theo Pytago thuận:
=> \(AB^2=OA^2+OB^2=2R^2\)
Khi đó diện tích tứ giác ABCD:
\(S=AB^2=2R^2\)
b) +) góc AEC=90' ( góc nội tiếp chắn nửa đường tròn)
Ta có: góc MOC + góc MEC =180=> OMEC nội tiếp đường tròn đường kính MC
Theo Pytago thuận ta có:
\(MC^2=OM^2+OC^2=\frac{R^2}{4}+R^2=\frac{5R^2}{4}\Rightarrow MC=\frac{R\sqrt{5}}{2}\)
\(\Rightarrow S=\frac{MC^2}{4}.\pi=\frac{5R^2}{16}.\pi\)
c) MA=MC (M thuộc trung trực AC)=> tam giác MAC cân tại M=> MCA=MAC
Tương tự, ta có OAE=OEA
=> OEA=MCA
=> \(\Delta OAE~\Delta MAC\left(g.g\right)\)
\(\Rightarrow\frac{OA}{MA}=\frac{AE}{AC}\Leftrightarrow MA.AE=OA.AC=2R^2\)
ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)
kết hợp với giả thiết ta có diện tích ADF bằng BCF
hay d(A,DF).DF.1/2=d(B,CF).CF.1/2
hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC
vậy => đpcm
a, do ABCD là hình chữ nhật nên 2 đường chéo AC và BD sẽ cắt nhau tại trung điểm O mỗi đườn
\(=>OA=OB=OC=OD\)
=>A,B,C,D cách đều O nên A,B,C,D nằm trên (O) đường kính AC
b,do M,N,P,Q là trung điểm OA,OB,OC,OD
mà \(OA=OB=OC=OD\left(cmt\right)\)
\(=>OM=ON=OQ=OP\)
4 điểm M,N,P,Q nằm trên (O) đường kính MP
Hãy xác định hàm số y=ax+b, biết: đồ thị hàm số song song với đường thẳng y=2x và cắt trục hoành tại điểm có hoành độ bằng -3