Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ˆACD=900ACD^=900 (góc nội tiếp chắn nửa đường tròn đường kính AD)
Xét tứ giác DCEF có:
ˆACD=900ACD^=900 (cm trên)
ˆEFD=900EFD^=900 (vì EF⊥ADEF⊥AD (gt))
⇒ˆACD+ˆEFD=1800⇒ACD^+EFD^=1800
=> Tứ giác DCEF là tứ giác nội tiếp đường tròn (đpcm).
b) Vì tứ giác DCEF là tứ giác nội tiếp (chứng minh câu a)
⇒ˆC1=ˆD1⇒C1^=D1^ (góc nội tiếp cùng chắn cung EF) (1)
Mà ⇒ˆC2=ˆD1⇒C2^=D1^ (góc nội tiếp cùng chắn cung AB) (2)
Từ (1) và (2) ⇒ˆC1=ˆC2⇒C1^=C2^
⇒⇒ CA là tia phân giác của ˆBCFBCF^ (đpcm)
k đúng hộ
c, Vì CA là tia phân giác góc BCF=> góc BCF =2 góc DCF hay BCF =2 góc ECF
Mà EFDC là tứ giác nội tiếp (theo a,)=> góc ECF = góc EDF=> góc BCF = 2 góc EDF=> góc BCF = 2 góc MDF (1)
Góc BMF là góc ngoài tại đỉnh M của tam giác FMD=> góc BMF= góc MFD + góc MDF(2)
tác giác EFD vuông tại F có M là trung điểm của ED=>MF=MD=> tam giác MFD cân=>gócMFD=gócMDF (3)
từ (2) và (3)=> góc BMF = 2 góc MDF(4)
từ (1) và (4) => góc BCF= góc BMF=> tứ giác BCMF nội tiếp
tb. Kéo dài BH cắt AC tại K
Vì H là điểm đối xứng của M qua BC (gt) => BC là đường trung trực của HM (định nghĩa đối xứng trục) => BH = BM (định lý thuận) => \(\Delta BHM\)cân tại B (định nghĩa) => BC là đường phân giác của \(\widehat{HBM}\)(định lý 1) => \(\widehat{CBM}=\widehat{CBH}\)\(=\widehat{CBK}\)(1)
Xét đường tròn (O) có: \(\widehat{CBM}=\widehat{CAM}(=\frac{1}{2}sđ\widebat{CM})\)(2)
Từ (1) và (2) => \(\widehat{CBK}=\widehat{CAM}=\widehat{CAD}\)(do A,D,M => \(\widehat{CAM}=\widehat{CAD}\)) (3)
Xét \(\Delta ACD\)có: \(\widehat{ACD}+\widehat{CAD}=90^o\)hay \(\widehat{KCB}+\widehat{CAD}=90^o\)(do A,K,C và B,D,C => \(\widehat{ACD}=\widehat{KCB}\)) (4)
Thay (3) vào (4) => \(\widehat{CBK}+\widehat{KCB}=90^o\)
Mà trong \(\Delta BCK\)thì : \(\widehat{CBK}+\widehat{KCB}+\widehat{BKC}=180^o\Rightarrow\widehat{BKC}=90^o\Rightarrow BK\perp AC\)=> BK là đường cao của \(\Delta ABC\)
Lại có H là giao điểm của AD và BK => H là trực tâm của \(\Delta ABC\)(đpcm)
c. Vì tứ giác BDME là tứ giác nội tiếp (cmt) => \(\widehat{MED}=\widehat{MBD}\left(=\frac{1}{2}sđ\widebat{MD}\right)\)= \(\widehat{MBC}\)(do B,D,C ) = \(\widehat{MAC}\)= \(\widehat{MAF}\)(do A,F,C )(5)
Tứ giác AEMF có: \(\widehat{AEM}+\widehat{AFM}=90^o+90^o=180^o\)(do ME\(\perp AB\)tại E (gt) => \(\widehat{AEM}=90^o\)và MF \(\perp AC\)tại F (gt) => \(\widehat{AFM}=90^o\))
=> Tứ giác AEMF là tứ giác nội tiếp( Dhnb) => \(\widehat{MEF}=\widehat{MAF}\)(cùng = \(\frac{1}{2}sđ\widebat{MF}\)) (6)
Từ (5) và (6) => \(\widehat{MED}=\widehat{MEF}\Rightarrow\)3 điểm E, D, F thẳng hàng (2 góc cùng số đo, có 1 cạnh chung, 2 cạnh còn lại nằm về 1 phía so với cạnh chung thì 2 cạnh còn lại trùng nhau) => Đpcm
bạn tự vẽ hình nha
a)Xét tứ giác ABEF có
góc ABE=90 độ( góc nội tiếp chắn nửa dường tròn)
và góc AFE=90 độ (EF vuông góc AD tại F)
=> góc ABE + góc AFE =180 độ
=> tứ giác ABEF nội tiếp dường tròn đường kính AE
b)Ta có : góc CBD=góc CAD ( góc nội tiếp cùng chắn cung CD của (O))
và góc CAD =góc FBD (góc nội tiếp chắn cung EF của đường tròn ngoại tiếp tứ giác ABEF)
=>góc CBD=góc FBD (=góc CAD)
=>BD là tia phân giác của góc CBF
c)Xét tứ giác CEFD có:
góc DCA=90 độ (góc nội tiếp chắn nửa đường tròn)
và góc EFD=90 độ (EF vuông góc AD tại F)
=> góc DCA+góc EFD=180 độ
=> tứ giác CEFD nội tiếp dường tròn đường kính ED)
Ta có tam giác ABE vuông tại B có dường trung tuyến BM (M là trung diểm của AE)
=>BM=1/2. AE= AM=ME =>tam giác ABM cân tại M => góc ABM= góc BAM
mà góc ABM +góc MBF+góc FBE=90 độ
và góc FBE=góc CAD (cmt)
=>góc MBF+ góc CAD+ góc BAM =90 độ
mà góc ADB+ góc CAD+góc BAM =90 độ(góc BAD=góc BAM+goc1CAD)
=>góc MBF=góc ADB
mà góc ADB = góc FCM ( góc nội tiếp cùng chắn cung EF của đường tròn ngoại tiếp tứ giác CEFD)
=>góc MBF= góc FCM (=góc ADB)
=>tứ giác BMFC nội tiếp đường tròn
#B
a) Ta có: ^ABD = 90o ( góc nội tiếp chắn cung AD ( nửa đường tròn ) )
và ^AFE = 90o ( EF vuông AD)
=> ^ABD + ^AFE = 180o
=> ABEF nội tiếp
Chứng minh tương tự với DCEF
b) ABCD nội tiếp => ^ACB = ^ADB ( cùng chắn cung AB )
DCEF nội tiếp => ^ECF = ^EDF ( cùng chắn cung EF ) => ^ACF = ^ADB
=> ^ACB = ^ACF
=> CA là phân giác ^BCF