K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

O A B C D 80

Theo tính chất góc nội tiếp, ta có:

\(\widehat{DAB}=\dfrac{1}{2}\) sđ\(\stackrel\frown{BD}\)

\(\Rightarrow\)\(\stackrel\frown{BD}=2\widehat{DAB}=2.80\) độ \(=160\) độ

-Chúc bạn học tốt-

2:

a: góc MAO+góc MBO=180 độ

=>MAOB nội tiếp

b: ΔONP cân tại O

mà OK là trung tuyến

nên OK vuông góc NP

góc OKM=góc OAM=góc OBM=90 độ

=>O,P,A,M,B cùng nằm trên đường tròn đường kính OM

góc AKM=góc AOM

góc BKM=góc BOM

mà góc AOM=góc BOM

nên góc AKM=góc BKM

=>KM là phân giác của góc AKB

9 tháng 2 2018

Giải bài 55 trang 89 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 55 trang 89 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 55 trang 89 SGK Toán 9 Tập 2 | Giải toán lớp 9

11 tháng 4 2017

Ta có: = - = 80o – 30o = 50o (1)

- ∆MBC là tam giác cân (MB= MC) nên = = 55o (2)

- ∆MAB là tam giác cân (MA=MB) nên = 50o (theo (1))

Vậy = 180o – 2. 50o = 80o

= sđcung BCD (số đo góc nội tiếp bằng nửa số đo của cung bị chắn)

=> sđ cung BCD = 2 = 2. 80o = 160o

Mà sđ cung BC = = 70o (số đo ở tâm bằng số đo cung bị chắn)

Vậy cung DC = 160o – 70o = 90o (vì C nằm trên cung nhỏ cung BD)

Suy ra = 90o (4)

∆MAD là tam giác cân (MA= MD)

Suy ra = 180o – 2.30o = 120o (5)

∆MCD là tam giác vuông cân (MC= MD) và = 90o

Suy ra = = 45o (6)

= 100o theo (2) và (6) và vì CM là tia nằm giữa hai tia CB, CD



11 tháng 4 2017

Ta có: = - = 80o – 30o = 50o (1)

- ∆MBC là tam giác cân (MB= MC) nên = = 55o (2)

- ∆MAB là tam giác cân (MA=MB) nên = 50o (theo (1))

Vậy = 180o – 2. 50o = 80o

= sđcung BCD (số đo góc nội tiếp bằng nửa số đo của cung bị chắn)

=> sđ cung BCD = 2 = 2. 80o = 160o

Mà sđ cung BC = = 70o (số đo ở tâm bằng số đo cung bị chắn)

Vậy cung DC = 160o – 70o = 90o (vì C nằm trên cung nhỏ cung BD)

Suy ra = 90o (4)

∆MAD là tam giác cân (MA= MD)

Suy ra = 180o – 2.30o = 120o (5)

∆MCD là tam giác vuông cân (MC= MD) và = 90o

Suy ra = = 45o (6)

= 100o theo (2) và (6) và vì CM là tia nằm giữa hai tia CB, CD



12 tháng 4 2017

ˆBAD=900+12002=1050BAD^=900+12002=1050 (góc nội tiếp chắn cung BCD) (1)

ˆADC=600+9002=750ADC^=600+9002=750 ( góc nội tiếp chắn cung ABC) (2)

Từ (1) và (2) có:

ˆBAD+ˆADC=1050+750=1800BAD^+ADC^=1050+750=1800 (3)

ˆBADBAD^ˆADCADC^ là hai góc trong cùng phía tạo bởi cát tuyến AD và hai đường thẳng AB, CD.

Đẳng thức (3) chứng tỏ AB // CD. Do đó tứ giác ABCD là hình thang, mà hình thang nội tiếp là hình thang cân.

Vậy ABCD là hình thang cân (BC = AD và sđ cung BC = AD = 90o )

b) Giả sử hai đường chéo AC và BD cắt nhau tại I.

ˆCIDCID^ là góc có đỉnh nằm trong đường tròn, nên:

ˆCID=sđcungAB+sđcungCD2=600+12002=900CID^=sđcungAB+sđcungCD2=600+12002=900

Vậy AC ⊥ BD

c)

Vì sđ cung AB = 60o nên ˆAIB=600AIB^=600 => ∆AIB đều, nên AB = R

Vì sđ cung BC = 90o nên BC = R√2

AD = BC = R√2

nên sđ cung CD= 120o nên CD = R√3



12 tháng 4 2017

Hướng dẫn giải:

ˆBAD=900+12002=1050BAD^=900+12002=1050 (góc nội tiếp chắn cung BCD) (1)

ˆADC=600+9002=750ADC^=600+9002=750 ( góc nội tiếp chắn cung ABC) (2)

Từ (1) và (2) có:

ˆBAD+ˆADC=1050+750=1800BAD^+ADC^=1050+750=1800 (3)

ˆBADBAD^ˆADCADC^ là hai góc trong cùng phía tạo bởi cát tuyến AD và hai đường thẳng AB, CD.

Đẳng thức (3) chứng tỏ AB // CD. Do đó tứ giác ABCD là hình thang, mà hình thang nội tiếp là hình thang cân.

Vậy ABCD là hình thang cân (BC = AD và sđ cung BC = AD = 90o )

b) Giả sử hai đường chéo AC và BD cắt nhau tại I.

ˆCIDCID^ là góc có đỉnh nằm trong đường tròn, nên:

ˆCID=sđcungAB+sđcungCD2=600+12002=900CID^=sđcungAB+sđcungCD2=600+12002=900

Vậy AC ⊥ BD

c)

Vì sđ cung AB = 60o nên ˆAIB=600AIB^=600 => ∆AIB đều, nên AB = R

Vì sđ cung BC = 90o nên BC = R√2

AD = BC = R√2

nên sđ cung CD= 120o nên CD = R√3

16 tháng 1 2017

Giải bài 55 trang 89 SGK Toán 9 Tập 2 | Giải toán lớp 9

Ta có: 

(1)

(3)

(số đo góc nội tiếp bằng nửa số đo của cung bị chắn).

(theo (2) và (6) và Cm là tia nằm giữa hai tia CB,CD).