Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B A D C O M E
a)+)tứ giác ABCD có 2 đường chéo bằng nhau AC=BD , vuông góc với nhau và cắt nhau tại trung điểm mỗi đường
=> Tứ giác ABCD là hình vuông
+) Tam giác AOB vuông tại O, có OA=OB=R, theo Pytago thuận:
=> \(AB^2=OA^2+OB^2=2R^2\)
Khi đó diện tích tứ giác ABCD:
\(S=AB^2=2R^2\)
b) +) góc AEC=90' ( góc nội tiếp chắn nửa đường tròn)
Ta có: góc MOC + góc MEC =180=> OMEC nội tiếp đường tròn đường kính MC
Theo Pytago thuận ta có:
\(MC^2=OM^2+OC^2=\frac{R^2}{4}+R^2=\frac{5R^2}{4}\Rightarrow MC=\frac{R\sqrt{5}}{2}\)
\(\Rightarrow S=\frac{MC^2}{4}.\pi=\frac{5R^2}{16}.\pi\)
c) MA=MC (M thuộc trung trực AC)=> tam giác MAC cân tại M=> MCA=MAC
Tương tự, ta có OAE=OEA
=> OEA=MCA
=> \(\Delta OAE~\Delta MAC\left(g.g\right)\)
\(\Rightarrow\frac{OA}{MA}=\frac{AE}{AC}\Leftrightarrow MA.AE=OA.AC=2R^2\)
ta có : BC = 2R ; AD = AE = r
nên 2R + r = BC + (AE + AD) = (BF + FC) + (AE + AD)
= (DB + EC) + (AE + AD) = (AD + DB) + (AE + EC)
= AB + AC ( đpcm)
Gọi A; B; CD,E,F làn lượt là tiếp điểm của đường tròn nội tiếp tam giác với BC; CA; AB
Khi đó: \(S=S_{BIC}+S_{CAI}+S_{BAI}=\frac{1}{2}\) \(BC.ID+CA.IE+AB.IF=p.r\)
\(\frac{S}{h_a}+\frac{S}{h_b}+\frac{S}{h_c}=\frac{1}{2}\) \(a+b+c=p=\frac{S}{r}\)
\(\RightarrowĐPCM\)
Không tính tổng quát, giả sử: \(h_a\le h_b\le h_c\)
\(\Rightarrow\frac{1}{h_a}\ge\frac{1}{h_b}\ge\frac{1}{h_c}\)
\(\Rightarrow\frac{1}{h_a}\ge\frac{1}{3}\)
\(\Rightarrow h_a\le3\)
Mặt khác: \(\frac{1}{h_a}< \frac{1}{r}=1\Rightarrow h_a>1\Rightarrow h_a\ge2\)
Vậy: \(h_a=2\)hoặc \(h_a=3\)
Nếu \(h_a=2\)
\(\frac{1}{h_b}+\frac{1}{h_c}=1-\frac{1}{2}=\frac{1}{2}\)**
Ta có: \(a\ge b\ge c\)do \(h_a\le h_b\le h_c\)
Để a; b; clà 3 cạnh của một hình tam giác ta chỉ cần b + c > a do khi \(a\ge b\ge c\)theo ta sẽ có ngay a + c > b, a + b > c
\(\Leftrightarrow\frac{S}{h_b}+\frac{S}{h_c}>\frac{S}{h_a}\)
\(\Leftrightarrow\frac{1}{h_b}+\frac{1}{h_c}>\frac{1}{h_a}=\frac{1}{2}\)mâu thuẫn với **
Vậy, loại trường hợp này.
\(\Rightarrow h_a=3\Rightarrow h_b\ge h_c\ge3\)
\(\frac{1}{h_b}+\frac{1}{h_c}=1-\frac{1}{3}=\frac{2}{3}\)
\(\frac{1}{h_b}\ge\frac{1}{h_c}\)
Suy ra: \(\frac{1}{h_b}\ge\frac{1}{3}\Rightarrow h_b\le3\)
Mà: \(h_b\ge\frac{1}{3}\Rightarrow h_b\le3\)
Vậy: \(h_b=3\Rightarrow h_c=3\)
\(\RightarrowĐPCM\)
Không thì dùng định lý Euler nhanh hơn. Gọi d là khoản cách giữa tâm nội tiếp và ngoại tiếp thì ta có
\(d^2=R\left(R-2r\right)\ge0\)
\(\Leftrightarrow R\ge2r\)
Ta có: \(S=\frac{abc}{4R}=\frac{\left(a+b+c\right)r}{2}\)
\(\Rightarrow\hept{\begin{cases}R=\frac{abc}{4S}\\r=\frac{2S}{a+b+c}\end{cases}}\)
Ta cần chứng minh:
\(R\ge2r\)
\(\Leftrightarrow\frac{abc}{4S}\ge\frac{4S}{a+b+c}\)
\(\Leftrightarrow abc\left(a+b+c\right)\ge16S^2\)
\(\Leftrightarrow abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)
Ta có:
\(\sqrt{\left(a+b-c\right)\left(a+c-b\right)}\le\frac{a+b-c+a+c-b}{2}=a\)
Tương tự ta có điều phải chứng minh
Tới đây thì xong rồi nhé.
câu d bạn ơi. bạn giải được không các câu trên mình làm được hết rồi hjhj