Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{S}{h_a}+\frac{S}{h_b}+\frac{S}{h_c}=\frac{1}{2}\left(a+b+c\right)=p=\frac{S}{r}\)
\(\Rightarrow\frac{1}{r}=\frac{1}{h_a}+\frac{1}{h_b}+\frac{1}{h_c}\)
Học tốt!!!!!!!!!!!!!!!!
Bài2 ,
Ta có\(sin_P^2+cos_P^2=1\)
mà \(2\left(sin_P^2+cos_P^2\right)\ge\left(sin_P+cos_p\right)^2\Rightarrow\left(sin_p+cos_p\right)\le\sqrt{2}\)
^_^
Gọi O là tâm đường tròn bàng tiếp trong góc A.Ta có:
\(S_{OAC}+S_{OAB}-S_{OBC}=S_{ABC}\Rightarrow b.r_a+c.r_a-a.r_a=2S\Rightarrow S=\frac{r_a\left(b+c-a\right)}{2}=r_a\left(p-a\right).\)(p là nửa chu vi tam giác ABC)
Cm tương tự: \(S=r_a\left(p-a\right)=r_b\left(p-b\right)=r_c\left(p-c\right)=p.r\)
\(\Rightarrow\frac{S}{r_a}+\frac{S}{r_b}+\frac{S}{r_c}=p-a+p-b+p-c=3p-2p=p=\frac{S}{r}\Rightarrow\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}\)(đpcm)
Đặt BC=a, AC=b, AB=c
\(P=\frac{a+b+c}{2}\)
S là diện tích của tam giác ABC
Ta có công thức tính bán kính của các đường tròn bàng tiếp:
Tại góc A: \(r_a=\frac{S}{P-a}\)
Tại góc B: \(r_b=\frac{S}{P-b}\)
Tại góc C: \(r_c=\frac{S}{P-c}\)
Công thức tính bán kính đường tròn nội tiếp tam giác ABC:
\(r=\frac{S}{P}\)
=> \(\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}=\frac{P-a}{S}+\frac{P-b}{S}+\frac{P-c}{S}=\frac{3P}{S}-\frac{a+b+c}{S}\)
\(=\frac{3P}{S}-\frac{2P}{S}=\frac{P}{S}=\frac{1}{r}\)
\(h=\sqrt{b^2-\frac{a^2}{4}}\Rightarrow S=\frac{1}{2}ah=\frac{1}{2}a\sqrt{b^2-\frac{a^2}{4}}\)
\(R=\frac{abb}{4S}=\frac{ab^2}{\sqrt{4b^2-a^2}.a}=\frac{b^2}{\sqrt{4b^2-a^2}}\)
\(r=\frac{S}{p}=\frac{a\sqrt{b^2-\frac{a^2}{4}}}{a+2b}\)