K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 1 2016

http://olm.vn/hoi-dap/question/403903.html

27 tháng 1 2016

http://olm.vn/hoi-dap/tag/Toan-lop-8.html

 1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc...
Đọc tiếp

 

1. Cho tứ giác ABCD ( AD không song song BC) có E,F lần lượt là trung điểm AD, BC và EF=AB+CD/2. Chứng minh rằng tứ giác ABCD là hình thang.

2. Cho tứ giác ABCD có AD=BC. Đường thẳng đi qua trung điểm M và N của 2 cạnh AB và CD cắt AD và BC lần lượt tại E và F. Chứng minh góc AEM=góc MFB.

3. Cho tam giác ABC (AB>AC). Trên cạnh AB lấy điểm D sao cho BD=AC. Gọi M,N lần lượt là trung điểm của AD, BC. Chứng minh góc BAC = 2.BMN

4. Cho tứ giác ABCD, gọi A', B', C', D' lần lượt là trọng tâm của các tam giác BCD, ACD, ABD, ABC. Chứng minh rằng các đường thẳng AA', BB', CC', DD' đồng quy.

5. Cho tam giác ABC, G là trọng tâm. Đường thẳng d không cắt các cạnh của tam giác ABC. Gọi A', B', C', G' lần lượt là hình chiếu của A, B, C, G trên đường thẳng d. Chứng minh GG'=AA'+BB'+CC'/3

0
19 tháng 3 2020

I A B D C E F K

Gọi I là trung điểm của AB.

Giả sử đường thẳng IE cắt CD tại K1 

Có: \(\frac{IA}{K_1D}=\frac{EI}{EK_1}=\frac{IB}{K_1C}\) (hệ quả định lý Ta lét)

mà IA = IB (gt) nên K1D = K1C, do đó K1 là trung điểm CD

Giả sử đường thẳng IF cắt CD tại K2

Có: \(\frac{IA}{K_2C}=\frac{FI}{FK_2}=\frac{IB}{K_2D}\) (hệ quả định lý Ta lét)

mà IA = IB (gt) nên K2C = K2D, do đó K2 là trung điểm CD 

do IE và IF cùng đi qua trung điểm K của CD nên hai đường thẳng này trùng nhau

Vậy ta có đpcm

19 tháng 3 2020

Bạn ơi gọi luôn I là trung điểm AB thì sai r

22 tháng 8 2021

1) Xét tam giác ABC có:

M là trung điểm của AB( gt)

N là trung điểm của BC( gt)

=> MN là đường trung bình của tam giác ABC

=> \(MN=\dfrac{1}{2}AC\left(1\right)\)

Xét tam giác ADC có:

Q là trung điểm của AD( gt)

P là trung điểm của DC( gt)

=> PQ là đường trung bình của tam giác ADC

=> \(PQ=\dfrac{1}{2}AC\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\Rightarrow MN=PQ\)

b) Xét tam giác ABD có:

M là trung điểm của AB (gt)

F là trung điểm của BD(gt)

=> MF là đường trung bình của tam giác ABD

=> MF//AD và \(MF=\dfrac{1}{2}AD\) (3)

CMTT => EP là đường trung bình của tam giác ADC

=> EP//AD và \(EP=\dfrac{1}{2}AD\left(4\right)\)

Từ (3),(4) => Tứ giác MEPF là hình bình hành

 

22 tháng 8 2021

c) Ta có: MN là đường trung bình của tam giác ABC(cmt)

\(\Rightarrow\left\{{}\begin{matrix}MN=\dfrac{1}{2}AC\\MN//AC\end{matrix}\right.\)(5)

Ta có: PQ là đường trung bình của tam giác ABC(cmt)

\(\Rightarrow\left\{{}\begin{matrix}PQ=\dfrac{1}{2}AC\\PQ//AC\end{matrix}\right.\)(6)

Từ (5),(6) => Tứ giác MNPQ là hình bình hành

=> MP cắt PQ tại trung điểm của MP(t/c)

Mà EF cắt MP tại trung điểm MP( tứ giác MEPF là hình bình hành)

=> MP,NQ,EF đồng quy