Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Sử dụng công thức \((1)\): Với \(a,b,c\) là ba cạnh đối diện góc \(\widehat{A},\widehat{B},\widehat{C}\) của tam giác \(ABC\) thì \(S_{ABC}=\frac{1}{2}AB.AC\sin A\)
Chứng minh:
Kẻ \(BH\perp AC\Rightarrow S_{ABC}=\frac{BH.AC}{2}\)
Xét tam giác $ABH$ vuông thì \(\sin A=\frac{BH}{AB}\Rightarrow BH=\sin A.AC\)
Từ hai điều trên suy ra \(S_{ABC}=\frac{AB.AC.\sin A}{2}\) (đpcm)
Quay trở lại bài toán :
Sử dụng công thức \(\sin \alpha=\sin (180-\alpha)\) suy ra \(\sin AOD=\sin AOB=\sin BOC=\sin DOC\)
Áp dụng công thức \((1)\)
\(S_{ABCD}=S_{AOB}+S_{AOD}+S_{DOC}+S_{BOC}=\frac{AO.OB.\sin AOB+AO.DO.\sin AOD+DO.CO.\sin DOC+BO.CO.\sin BOC}{2}\)
\(=\frac{\sin AOB(AO.OB+AO.OD+DO.OC+BO.OC)}{2}=\frac{\sin AOB(AO.BD+OC.BD)}{2}=\frac{\sin 50^0.BD.AC}{2}\)
\(=\frac{20\sin 50}{2}=10\sin 50\)
Ai nói ABC vuông đâu, là ABH, bạn đọc lại bài giải kỹ giúp mình nhé. Công thức này lớp 9 chắc chắn học rồi.
Lời giải:
Vận dụng bổ đề $S_{ABC}=\frac{1}{2}.AB.AC\sin A$ ta có:
$S_{ABCD}=S_{OAB}+S_{OBC}+S_{ODC}+S_{AOD}$
$=\frac{1}{2}.OA.OB.\sin \widehat{AOB}+\frac{1}{2}.OB.OC.\sin \widehat{BOC}+\frac{1}{2}.OD.OC.\sin \widehat{DOC}+\frac{1}{2}.OA.OD.\sin \widehat{AOD}$
$=\frac{1}{2}.OA.OB\sin 60^0+\frac{1}{2}.OB.OC.\sin 120^0+\frac{1}{2}.OD.OC\sin 60^0+\frac{1}{2}.OA.OD.\sin 120^0$
$=\frac{\sqrt{3}}{4}(OA.OB+OB.OC+OC.OD+OD.OA)$
$=\frac{\sqrt{3}}{4}(AC.BD)=\frac{\sqrt{3}}{4}.4.5=5\sqrt{3}$ (cm vuông)
Sử dụng công thức (1): Với a, b, c là 3 cạnh đối diện của \(\widehat{A}\), \(\widehat{B}\), \(\widehat{C}\) của tam giác ABC thì \(S_{ABC}=\frac{1}{2}AB\). \(AC\sin A\)
Chứng minh: Kẻ \(BH\perp AC\Rightarrow S_{ABC}=\frac{BH.AC}{2}\)
Xét tam giác ABH vuông thì sin \(A=\frac{BH}{AB}\Rightarrow BH=\sin A.AC\)
Từ hai điều trên suy ra: \(S_{ABC}=\frac{AB.AC.\sin A}{2}\left(đpcm\right)\)
Trở lại bài toán:
Sử dụng công thức \(\sin\alpha=\sin\left(180-\alpha\right)\Rightarrow\sin AOD=\sin AOB=\sin BOC=\sin DOC\)
Áp dụng công thức (1):
\(S_{ABCD}=S_{AOB}=S_{AOD}=S_{DOC}=S_{BOC}=\frac{AO.OB.\sin AOB+AO.DO.\sin AOD+DO.CO.\sin DOC+BO.CO.\sin BOC}{2}\)
\(=\frac{\sin AOB\left(AO.OB+AO.OD+DO.OC+BO.OC\right)}{2}=\frac{\sin AOB\left(AO.BD+OC.BD\right)}{2}=\frac{\sin50^o.BD.AC}{2}\)
\(=\frac{20\sin50}{2}=10\sin50\)