K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 9 2021
1/2bóng đỏ 1/3 số bóng xanh tìm bóng vàng
NM
6 tháng 9 2021

Gọi điểm I thỏa mãn : \(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\), do ABC cố định nên điểm I là cố định

ta có : 

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|=\)\(\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+3\overrightarrow{MI}+3\overrightarrow{IC}\right|=\left|5\overrightarrow{MI}\right|=5MI\) nhỏ nhất khi M là hình chiếu của I lên đường thẳng d

6 tháng 1 2021

hình ảnh

 

31 tháng 3 2016

Từ giả thiết suy ra AB=5 và A, B trở về cùng 1 phía của đường thẳng \(\Delta\)

a) Nếu tam giác ABC cân tại C thì CA=CB và từ đó, tìm được \(C\left(-\frac{47}{4};\frac{47}{2}\right)\)

    Nếu tam giác ABC cân tại C thì AC=AB=5, từ đó tìm được C(2;-4) và C(-2;4) thỏa mãn. Nếu tam giác ABC cân tại B thì BC=BA=5 nhưng \(d\left(B;\Delta\right)=\frac{16}{\sqrt{5}}>5\) nên trong trường hợp này không có điểm C thỏa mãn

b) Với I là trung điểm AB thì \(\overrightarrow{AD}+\overrightarrow{BD}=\overrightarrow{2ID}\)

 Do đó \(D\in\Delta:\left|\overrightarrow{AD}+\overrightarrow{BD}\right|\) nhỏ nhất khi và chỉ khi D là hình chiếu của I trên \(\Delta\).

Vậy đáp số : \(D\left(-\frac{1}{5};\frac{2}{5}\right)\)

c) \(E\left(\frac{2}{11};-\frac{4}{11}\right)\)

d) \(\left|FA-FB\right|\ge0\),\("="\)\(\Leftrightarrow FA=FB\Leftrightarrow F\left(-\frac{47}{4};\frac{47}{2}\right)\)

8 tháng 5 2016

a. Vì \(2-2.5+3=-5< 0\) và \(-4-2.5+3=-11< 0\) nên A, B cùng phía với đường thẳng \(\Delta\).

Gọi \(A'\left(x;y\right)\) là điểm đối xứng với A qua  \(\Delta\), khi đó (x;y) là nghiệm của hệ :

\(\begin{cases}\frac{x-2}{1}=\frac{y-5}{-2}\\\frac{x-2}{1}-2.\frac{y+5}{2}+3=0\end{cases}\)

Giải hệ ta được : \(\left(x;y\right)=\left(4;1\right)\) suy ra \(\overrightarrow{A'B}=\left(-8;4\right)=4\left(-2;1\right)\)

Do đó đường thẳng A'B có phương trình tham số \(\begin{cases}x=4-2t\\y=1+t\end{cases}\)\(;t\in R\)

Suy ra điểm C cần tìm có tọa độ là nghiệm của hệ :

\(\begin{cases}x=4-2t\\y=1+t\\x-2y+3=0\end{cases}\)

Giải hệ ta có điểm C \(\left(\frac{3}{2};\frac{9}{4}\right)\)

b. Gọi I là trung điểm của AB. Khi đó\(I\left(-1;5\right)\) và \(\overrightarrow{CA}+\overrightarrow{CB}=2\overrightarrow{CI}\), với mọi C.

Vậy \(C\in\Delta\) : \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|\) bé nhất \(\Leftrightarrow\left|CI\right|\) bé nhất \(\Leftrightarrow C\) là hình chiếu của I trên \(\Delta\)

Nếu \(C\left(x;y\right)\) là hình chiếu  của I trên \(\Delta\) thì (x;y) là nghiệm của hệ :

\(\begin{cases}\frac{x+1}{1}=\frac{y-5}{-2}\\x-2y+3=0\end{cases}\)

Giải hệ thu được : \(\left(x;y\right)=\left(\frac{3}{5};\frac{9}{5}\right)\) vậy \(C\left(\frac{3}{5};\frac{9}{5}\right)\)

8 tháng 5 2016

Đường thẳng \(\Delta\) có vecto pháp tuyến \(\overrightarrow{n}=\left(1;-2\right)\) nên nhận \(\overrightarrow{u}=\left(2;1\right)\) làm vecto chỉ phương.

Từ đó để ý rằng đường thẳng \(\Delta\) cắt Ox tại \(M\left(-3;0\right)\) nên \(\Delta\) có phương trình dạng tham số :

\(\begin{cases}x=-3+2t\\y=t\end{cases}\) \(\left(t\in R\right)\)

a. Xét \(C\left(-3+2t;t\right)\in\Delta\), khi đó :

\(CA+CB=\sqrt{\left(5-2t\right)^2+\left(5-t\right)^2}+\sqrt{\left(2t+1\right)^2+\left(t-5\right)^2}\)

                  \(=\sqrt{5t^2-30t+50}+\sqrt{5t^2-6t+26}\)

                  \(=\sqrt{\left(\sqrt{5}t-3\sqrt{5}\right)^2}+\sqrt{\left(\frac{3}{\sqrt{5}}-\sqrt{5}t\right)^2+\frac{121}{5}}\)

                  \(\ge\sqrt{\left(\frac{3}{\sqrt{5}}-3\sqrt{5}\right)^2+\left(\sqrt{5}+\frac{11}{\sqrt{5}}\right)^2}=4\sqrt{5}\)

Dấu đẳng thức xảy ra khi và chỉ khi

\(\frac{\sqrt{5}t-3\sqrt{5}}{\frac{3}{\sqrt{5}}-\sqrt{5}t}=\frac{5}{11}\Leftrightarrow t=\frac{9}{4}\)

Từ đó tìm được : \(C\left(\frac{3}{2};\frac{9}{4}\right)\)

b. Với \(C\left(=3+2t;t\right)\in\Delta\) ta có \(\overrightarrow{CA}=\left(5-2t;5-t\right)\) và \(\overrightarrow{CB}=\left(-1-2t;5-t\right)\)

Suy ra : \(\overrightarrow{CA}+\overrightarrow{CB}=\left(4-4t;10-2t\right)\) và do đó :

\(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\sqrt{\left(4-4t\right)^2+\left(10-2t\right)^2}=\sqrt{\left(2\sqrt{5}t-\frac{18}{\sqrt{5}}\right)^2+\frac{256}{5}}\ge\frac{16}{\sqrt{5}}\)

Dấu đẳng thức xảy ra khi và chỉ khi \(t=\frac{9}{5}\)

Do đó điểm C cần tìm là \(\left(\frac{3}{5};\frac{9}{5}\right)\)