K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 2 2021

Hướng dẫn (khuya quá rồi).

Trong mp (ADN), lấy Q thuộc AD sao cho \(NP||GQ\)

\(\Rightarrow\left(\overrightarrow{MG};\overrightarrow{NP}\right)=\left(\overrightarrow{MG};\overrightarrow{GQ}\right)=180^0-\widehat{MGQ}\)

Áp dụng định lý hàm cos là tính được (\(GP=\dfrac{2}{3}NP\) ; tính MQ dựa vào hàm cos tam giác AMQ)

5 tháng 2 2021

a có thể hướng dẫn kĩ hơn giúp e được ko ạ :(

31 tháng 3 2017

Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11Giải bài 4 trang 92 sgk Hình học 11 | Để học tốt Toán 11

17 tháng 2 2021

1/ \(\overrightarrow{AM}=3\overrightarrow{AM}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)

\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MG}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{AM}+3\overrightarrow{MA}+3\overrightarrow{AG}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{AM}=3\overrightarrow{AG}\)

Ban tu ket luan

2/ Bạn coi lại đề bài, đẳng thức kia có vấn đề. 2k-1IB??

17 tháng 2 2021

\(\overrightarrow{IA}+2k-1+\overrightarrow{IB}+k\overrightarrow{IC}+\overrightarrow{ID}=0\)

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

31 tháng 3 2017

Giải bài 7 trang 92 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 92 sgk Hình học 11 | Để học tốt Toán 11

Bài 1: Cho hình hộp ABCD.A'B'C'D'A có tất cả các cạnh đều bằng a. 1) CMR: DCB'A' và BCD'A' là những hình vuông. 2) CMR: AC' vuông góc với DA'; AC' vuông góc với BA' 3) Tính độ dài đoạn AC' Bài 2: Cho hình hộp ABCD. A'B'C'D'. Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\), \(\overrightarrow{AB}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\) . Gọi I, J lần lượt thuộc các đoạn thẳng AC'...
Đọc tiếp

Bài 1: Cho hình hộp ABCD.A'B'C'D'A có tất cả các cạnh đều bằng a.

1) CMR: DCB'A' và BCD'A' là những hình vuông.

2) CMR: AC' vuông góc với DA'; AC' vuông góc với BA'

3) Tính độ dài đoạn AC'

Bài 2: Cho hình hộp ABCD. A'B'C'D'. Đặt \(\overrightarrow{AA'}=\overrightarrow{a}\), \(\overrightarrow{AB}=\overrightarrow{b}\) , \(\overrightarrow{AD}=\overrightarrow{c}\) . Gọi I, J lần lượt thuộc các đoạn thẳng AC' và B'C sao cho \(\overrightarrow{MA}=k\overrightarrow{MC'}\) , \(\overrightarrow{NB'}=k\overrightarrow{NC}\) . Biểu diễn các vectơ sau theo ba vectơ \(\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}\) (nhớ vẽ hình)

Bài 3: Cho tứ diện ABCD có tất cả các cạnh bằng a. Các điểm M, N lần lượt là trung điểm AB, CD. O là tâm đường tròn ngoại tiếp tam giác BCD.

1) CMR: AO vuông góc với CD; MN vuông góc với CD.

2) Tính góc giữa: AC và BN; MN và BC. (nhớ vẽ hình.)

0